메뉴 건너뛰기




Volumn 8065, Issue , 2013, Pages 176-197

Artificial immune system for forecasting time series with multiple seasonal cycles

Author keywords

artificial immune system; seasonal time series forecasting; similarity based methods

Indexed keywords

ANTIBODIES; ARTIFICIAL INTELLIGENCE; FORECASTING; SENSITIVITY ANALYSIS; TIME SERIES;

EID: 84892693073     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-642-41776-4_8     Document Type: Article
Times cited : (5)

References (19)
  • 3
    • 0043246006 scopus 로고    scopus 로고
    • Short-term electricity demand forecasting using double seasonal exponential smoothing
    • Taylor, J.W.: Short-Term Electricity Demand Forecasting Using Double Seasonal Exponential Smoothing. Journal of the Operational Research Society 54, 799-805 (2003)
    • (2003) Journal of the Operational Research Society , vol.54 , pp. 799-805
    • Taylor, J.W.1
  • 4
    • 77956265820 scopus 로고    scopus 로고
    • Exponentially weighted methods for forecasting intraday time series with multiple seasonal cycles
    • Taylor, J.W.: Exponentially Weighted Methods for Forecasting Intraday Time Series with Multiple Seasonal Cycles. International Journal of Forecasting 26(4), 627-646 (2010)
    • (2010) International Journal of Forecasting , vol.26 , Issue.4 , pp. 627-646
    • Taylor, J.W.1
  • 6
    • 0004393134 scopus 로고
    • Connectionist approach to time series prediction: An empirical test
    • Sharda, R., Patil, R.B.: Connectionist Approach to Time Series Prediction: An Empirical Test. Journal of Intelligent Manufacturing 3, 317-323 (1992)
    • (1992) Journal of Intelligent Manufacturing , vol.3 , pp. 317-323
    • Sharda, R.1    Patil, R.B.2
  • 7
    • 0000902316 scopus 로고    scopus 로고
    • Time series forecasting using nns: Should the data be deseasonalized first?
    • Nelson, M., Hill, T., Remus, T., O'Connor, M.: Time Series Forecasting Using NNs: Should the Data Be Deseasonalized First? Journal of Forecasting 18, 359-367 (1999)
    • (1999) Journal of Forecasting , vol.18 , pp. 359-367
    • Nelson, M.1    Hill, T.2    Remus, T.3    O'connor, M.4
  • 8
    • 4344591889 scopus 로고    scopus 로고
    • Neural network forecasting for seasonal and trend time series
    • Zhang, G.P., Qi, M.: Neural Network Forecasting for Seasonal and Trend Time Series. European Journal of Operational Research 160, 501-514 (2005)
    • (2005) European Journal of Operational Research , vol.160 , pp. 501-514
    • Zhang, G.P.1    Qi, M.2
  • 9
    • 36348935677 scopus 로고    scopus 로고
    • Quarterly time-series forecasting with neural networks
    • Zhang, G.P., Kline, D.M.: Quarterly Time-Series Forecasting with Neural Networks. IEEE Transactions on Neural Networks 18(6), 1800-1814 (2007)
    • (2007) IEEE Transactions on Neural Networks , vol.18 , Issue.6 , pp. 1800-1814
    • Zhang, G.P.1    Kline, D.M.2
  • 11
    • 0033097707 scopus 로고    scopus 로고
    • A comparison between neural networks forecasting techniques-case study: River flow forecasting
    • Atiya, A., El-Shoura, S., Shaheen, S., El-Sherif, M.: A Comparison Between Neural Networks Forecasting Techniques-Case Study: River Flow Forecasting. IEEE Transactions on Neural Networks 10(2), 402-409 (1999)
    • (1999) IEEE Transactions on Neural Networks , vol.10 , Issue.2 , pp. 402-409
    • Atiya, A.1    El-Shoura, S.2    Shaheen, S.3    El-Sherif, M.4
  • 12
    • 55349147976 scopus 로고    scopus 로고
    • Modeling and forecasting short-term electricity load: A comparison of methods with an application to brazilian data
    • Soares, L.J., Medeiros, M.C.: Modeling and Forecasting Short-Term Electricity Load: A Comparison of Methods with an Application to Brazilian Data. International Journal of Forecasting 24, 630-644 (2008)
    • (2008) International Journal of Forecasting , vol.24 , pp. 630-644
    • Soares, L.J.1    Medeiros, M.C.2
  • 13
    • 77955379460 scopus 로고    scopus 로고
    • Similarity-based approaches to short-term load forecasting
    • In: Zhu, J.J., Fung, G.P.C. (eds.)iConcept Press
    • Dudek, G.: Similarity-based Approaches to Short-Term Load Forecasting. In: Zhu, J.J., Fung, G.P.C. (eds.) Forecasting Models: Methods and Applications, pp. 161-178. iConcept Press (2010), http://www.iconceptpress.com/site/download- publishedPaper. php?paper-id=1009170201
    • (2010) Forecasting Models: Methods and Applications , pp. 161-178
    • Dudek, G.1
  • 15
    • 34548500577 scopus 로고    scopus 로고
    • Application areas of ais: The past, the present and the future
    • Hart, E., Timmis, J.: Application Areas of AIS: The Past, the Present and the Future. Applied Soft Computing 8(1), 191-201 (2008)
    • (2008) Applied Soft Computing , vol.8 , Issue.1 , pp. 191-201
    • Hart, E.1    Timmis, J.2
  • 16
    • 48249105942 scopus 로고    scopus 로고
    • Artificial immune system for short-term electric load forecasting
    • In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.)Springer, Heidelberg
    • Dudek, G.: Artificial Immune System for Short-term Electric Load Forecasting. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2008. LNCS (LNAI), vol. 5097, pp. 1007-1017. Springer, Heidelberg (2008)
    • (2008) ICAISC 2008. LNCS (LNAI) , vol.5097 , pp. 1007-1017
    • Dudek, G.1
  • 18
    • 48749112805 scopus 로고    scopus 로고
    • Automatic time series forecasting: The forecast package for r
    • Hyndman, R.J., Khandakar, Y.: Automatic Time Series Forecasting: The Forecast Package for R. Journal of Statistical Software 27(3), 1-22 (2008)
    • (2008) Journal of Statistical Software , vol.27 , Issue.3 , pp. 1-22
    • Hyndman, R.J.1    Khandakar, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.