메뉴 건너뛰기




Volumn 41, Issue 8, 2014, Pages 3944-3954

Fight sample degeneracy and impoverishment in particle filters: A review of intelligent approaches

Author keywords

Artificial intelligence; Impoverishment; Machine learning; Markov Chain Monte Carlo; Particle filter; Sequential Monte Carlo

Indexed keywords

ANT COLONY OPTIMIZATION; ARTIFICIAL INTELLIGENCE; CLUSTERING ALGORITHMS; GENETIC ALGORITHMS; LEARNING SYSTEMS; MACHINE LEARNING; MARKOV CHAINS; PARTICLE SWARM OPTIMIZATION (PSO);

EID: 84892589545     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2013.12.031     Document Type: Review
Times cited : (219)

References (114)
  • 4
    • 10944251332 scopus 로고    scopus 로고
    • Particle methods for change detection, system identification, and control
    • C. Andrieu, A. Doucet, S.S. Singh, and V. Tadic Particle methods for change detection, system identification, and control Proceedings of the IEEE 92 3 2004 423 438
    • (2004) Proceedings of the IEEE , vol.92 , Issue.3 , pp. 423-438
    • Andrieu, C.1    Doucet, A.2    Singh, S.S.3    Tadic, V.4
  • 7
    • 77955828051 scopus 로고    scopus 로고
    • Efficient particle filtering via sparse Kernel density estimation
    • A. Banerjee, and P. Burlina Efficient particle filtering via sparse Kernel density estimation IEEE Transactions on Image Processing 19 9 2010 2480 2490
    • (2010) IEEE Transactions on Image Processing , vol.19 , Issue.9 , pp. 2480-2490
    • Banerjee, A.1    Burlina, P.2
  • 8
    • 57949085983 scopus 로고    scopus 로고
    • Curse-of-dimensionality revisited: Collapse of the particle filter in very large scale systems
    • T. Bengtsson, P. Bickel, and B. Li Curse-of-dimensionality revisited: Collapse of the particle filter in very large scale systems IMS Collections 2 2008 316 334
    • (2008) IMS Collections , vol.2 , pp. 316-334
    • Bengtsson, T.1    Bickel, P.2    Li, B.3
  • 13
    • 70449518186 scopus 로고    scopus 로고
    • Machine condition prognosis based on sequential Monte Carlo method
    • W. Caesarendra, G. Niu, and B.-S. Yang Machine condition prognosis based on sequential Monte Carlo method Expert Systems with Applications 37 3 2010 2412 2420
    • (2010) Expert Systems with Applications , vol.37 , Issue.3 , pp. 2412-2420
    • Caesarendra, W.1    Niu, G.2    Yang, B.-S.3
  • 14
    • 44649107771 scopus 로고    scopus 로고
    • An overview of existing methods and recent advances in sequential Monte Carlo
    • O. Cappé, S.J. Godsill, and E. Moulines An overview of existing methods and recent advances in sequential Monte Carlo Proceedings of the IEEE 95 5 2007 899 924
    • (2007) Proceedings of the IEEE , vol.95 , Issue.5 , pp. 899-924
    • Cappé, O.1    Godsill, S.J.2    Moulines, E.3
  • 16
    • 14644418464 scopus 로고    scopus 로고
    • Kernel particle filter for visual tracking
    • C. Chang, and R. Ansari Kernel particle filter for visual tracking IEEE Signal Processing Letters 12 3 2005 242 245
    • (2005) IEEE Signal Processing Letters , vol.12 , Issue.3 , pp. 242-245
    • Chang, C.1    Ansari, R.2
  • 18
    • 0012338718 scopus 로고    scopus 로고
    • A sequential particle filter method for static models
    • N. Chopin A sequential particle filter method for static models Biometrika 89 2002 539 552
    • (2002) Biometrika , vol.89 , pp. 539-552
    • Chopin, N.1
  • 20
    • 34548774282 scopus 로고    scopus 로고
    • Multi-target state estimation and track continuity for the particle PHD filter
    • D.E. Clark, and J. Bell Multi-target state estimation and track continuity for the particle PHD filter IEEE Transactions on Aerospace and Electronic Systems 43 4 2007 1441 1452
    • (2007) IEEE Transactions on Aerospace and Electronic Systems , vol.43 , Issue.4 , pp. 1441-1452
    • Clark, D.E.1    Bell, J.2
  • 21
    • 57849133035 scopus 로고    scopus 로고
    • Adaptive methods for sequential importance sampling with application to state space models
    • J. Cornebise, É. Moulines, and J. Olsson Adaptive methods for sequential importance sampling with application to state space models Statistics and Computing 18 4 2008 461 480
    • (2008) Statistics and Computing , vol.18 , Issue.4 , pp. 461-480
    • Cornebise, J.1    Moulines, É.2    Olsson, J.3
  • 23
    • 0001534675 scopus 로고    scopus 로고
    • Nonlinear filtering: Interacting particle solution
    • P. Del Moral Nonlinear filtering: Interacting particle solution Markov Process, Related Fields 2 1996 555 579
    • (1996) Markov Process, Related Fields , vol.2 , pp. 555-579
    • Del Moral, P.1
  • 28
    • 49349102500 scopus 로고    scopus 로고
    • Limit theorems for weighted samples with applications to sequential Monte Carlo
    • R. Douc, and E. Moulines Limit theorems for weighted samples with applications to sequential Monte Carlo Annals of Statistics 36 5 2008 2344 2376
    • (2008) Annals of Statistics , vol.36 , Issue.5 , pp. 2344-2376
    • Douc, R.1    Moulines, E.2
  • 32
    • 0001460136 scopus 로고    scopus 로고
    • On sequential Monte Carlo sampling methods for Bayesian filtering
    • A. Doucet, S. Godsill, and C. Andrieu On sequential Monte Carlo sampling methods for Bayesian filtering Statistics and Computing 10 2000 197 208
    • (2000) Statistics and Computing , vol.10 , pp. 197-208
    • Doucet, A.1    Godsill, S.2    Andrieu, C.3
  • 33
    • 77951131231 scopus 로고    scopus 로고
    • A tutorial on particle filtering and smoothing: Fifteen years later
    • E.D. Crisan, B. Rozovsky, Oxford University Press Oxford
    • A. Doucet, and A.M. Johansen A tutorial on particle filtering and smoothing: Fifteen years later E.D. Crisan, B. Rozovsky, Handbook of Nonlinear Filtering 2009 Oxford University Press Oxford
    • (2009) Handbook of Nonlinear Filtering
    • Doucet, A.1    Johansen, A.M.2
  • 34
    • 0344445520 scopus 로고    scopus 로고
    • Adapting the sample size in particle filters through KLD-sampling
    • D. Fox Adapting the sample size in particle filters through KLD-sampling The International Journal of Robotics Research 22 12 2003 985 1003
    • (2003) The International Journal of Robotics Research , vol.22 , Issue.12 , pp. 985-1003
    • Fox, D.1
  • 36
    • 69549094228 scopus 로고    scopus 로고
    • Monte Carlo filter in mobile robotics localization: A clustered evolutionary point of view
    • A. Gasparri, S. Panzieri, F. Pascucci, and G. Ulivi Monte Carlo filter in mobile robotics localization: A clustered evolutionary point of view Journal of Intelligent & Robotic Systems 47 2 2006 155 174
    • (2006) Journal of Intelligent & Robotic Systems , vol.47 , Issue.2 , pp. 155-174
    • Gasparri, A.1    Panzieri, S.2    Pascucci, F.3    Ulivi, G.4
  • 37
    • 0035648076 scopus 로고    scopus 로고
    • Following a moving target-Monte Carlo inference for dynamic Bayesian models
    • W.R. Gilks, and C. Berzuini Following a moving target-Monte Carlo inference for dynamic Bayesian models Journal of the Royal Statistical Society: Series B 63 part 1 2001 127 146
    • (2001) Journal of the Royal Statistical Society: Series B , vol.63 , Issue.PART 1 , pp. 127-146
    • Gilks, W.R.1    Berzuini, C.2
  • 40
    • 0008782869 scopus 로고    scopus 로고
    • Improvement strategies for Monte Carlo particle filters
    • A. Doucet, N. de Freitas, N. Gordon, Springer New York, NY, USA
    • S.J. Godsill, and T. Clapp Improvement strategies for Monte Carlo particle filters A. Doucet, N. de Freitas, N. Gordon, Sequential Monte Carlo methods in practice 2001 Springer New York, NY, USA 139 158
    • (2001) Sequential Monte Carlo Methods in Practice , pp. 139-158
    • Godsill, S.J.1    Clapp, T.2
  • 42
    • 77955745818 scopus 로고    scopus 로고
    • Particle filter theory and practice with positioning applications
    • F. Gustafsson Particle filter theory and practice with positioning applications IEEE Aerospace and Electronic Systems Magazine 25 7 2010 53 81
    • (2010) IEEE Aerospace and Electronic Systems Magazine , vol.25 , Issue.7 , pp. 53-81
    • Gustafsson, F.1
  • 44
    • 0032136153 scopus 로고    scopus 로고
    • Condensation - Conditional density propagation for visual tracking
    • M. Isard, and A. Blake Condensation - conditional density propagation for visual tracking International Journal of Computer Vision 29 1 1998 5 28
    • (1998) International Journal of Computer Vision , vol.29 , Issue.1 , pp. 5-28
    • Isard, M.1    Blake, A.2
  • 48
    • 85049943801 scopus 로고    scopus 로고
    • An overview of sequential Monte Carlo methods for parameter estimation in general state-space models
    • N. Kantas, A. Doucet, S.S. Singh, and J.M. Maciejowski An overview of sequential Monte Carlo methods for parameter estimation in general state-space models Engineering 44 Ml 2009 774 785
    • (2009) Engineering , vol.44 , Issue.ML , pp. 774-785
    • Kantas, N.1    Doucet, A.2    Singh, S.S.3    Maciejowski, J.M.4
  • 49
    • 0030304310 scopus 로고    scopus 로고
    • Monte-Carlo filter and smoother for non-Gaussian nonlinear state space models
    • G. Kitagawa Monte-Carlo filter and smoother for non-Gaussian nonlinear state space models Journal of Computational and Graphical Statistics 1 1996 1 25
    • (1996) Journal of Computational and Graphical Statistics , vol.1 , pp. 1-25
    • Kitagawa, G.1
  • 51
    • 70350055066 scopus 로고    scopus 로고
    • Tackling the premature convergence problem in Monte-Carlo localization
    • G. Kootstra, and B. de Boer Tackling the premature convergence problem in Monte-Carlo localization Robotics and Autonomous Systems 57 11 2009 1107 1118
    • (2009) Robotics and Autonomous Systems , vol.57 , Issue.11 , pp. 1107-1118
    • Kootstra, G.1    De Boer, B.2
  • 55
    • 50249113689 scopus 로고    scopus 로고
    • Tracking in low frame rate video: A cascade particle filter with discriminative observers of different life spans
    • Y. Li, H. Ai, T. Yamashita, S. Lao, and M. Kawade Tracking in low frame rate video: A cascade particle filter with discriminative observers of different life spans IEEE Transactions on Pattern Analysis and Machine Intelligence 30 10 2008 1728 1740
    • (2008) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.30 , Issue.10 , pp. 1728-1740
    • Li, Y.1    Ai, H.2    Yamashita, T.3    Lao, S.4    Kawade, M.5
  • 57
    • 77955733455 scopus 로고    scopus 로고
    • Monte Carlo localization for mobile robot using adaptive particle merging and splitting technique
    • Harbin, China
    • Li, T.; Sun, S.; Duan, J. (2010). Monte Carlo localization for mobile robot using adaptive particle merging and splitting technique. In 2010 IEEE international conference on information and automation, Harbin, China (pp. 1913-1918).
    • 2010 IEEE International Conference on Information and Automation , pp. 1913-1918
    • Li, T.1
  • 58
    • 84890829873 scopus 로고    scopus 로고
    • Roughening methods to prevent sample impoverishment in the particle PHD filter
    • Istanbul Turkey
    • Li, T.; Sattar, T. P.; Han, Q.; Sun, S. (2013). Roughening methods to prevent sample impoverishment in the particle PHD filter. In FUSION 2013, Istanbul Turkey (pp. 9-12).
    • (2013) FUSION 2013 , pp. 9-12
    • Li, T.1    Sattar . T, P.2    Han, Q.3    Sun, S.4
  • 59
    • 84892605219 scopus 로고    scopus 로고
    • Resampling methods for particle filtering
    • Dec
    • Li, T.; Bolić, M.; Djurić, P. (2014). Resampling methods for particle filtering, accepted by IEEE Signal Processing Magazine, Dec. 2013. Preprint is available at https://sites.google.com/site/tianchengli85/ publications/current-work/preprint.
    • (2013) IEEE Signal Processing Magazine
    • Li, T.1    Bolić, M.2    Djurić, P.3
  • 60
    • 84862787562 scopus 로고    scopus 로고
    • Deterministic resampling: Unbiased sampling to avoid sample impoverishment in particle filters
    • T. Li, T.P. Sattar, and S. Sun Deterministic resampling: Unbiased sampling to avoid sample impoverishment in particle filters Signal Processing 92 7 2012 1637 1645
    • (2012) Signal Processing , vol.92 , Issue.7 , pp. 1637-1645
    • Li, T.1    Sattar, T.P.2    Sun, S.3
  • 61
    • 84879755262 scopus 로고    scopus 로고
    • Adapting sample size in particle filters through KLD-resampling
    • T. Li, S. Sun, and T.P. Sattar Adapting sample size in particle filters through KLD-resampling Electronics Letters 46 12 2013 740 742
    • (2013) Electronics Letters , vol.46 , Issue.12 , pp. 740-742
    • Li, T.1    Sun, S.2    Sattar, T.P.3
  • 64
    • 0000978881 scopus 로고    scopus 로고
    • A theoretical framework for sequential importance sampling and resampling
    • A. Doucet, N. de Freitas, N. Gordon, Springer New York, NY, USA
    • J. Liu, R. Chen, and T. Logvinenko A theoretical framework for sequential importance sampling and resampling A. Doucet, N. de Freitas, N. Gordon, Sequential Monte Carlo Methods in Practice 2001 Springer New York, NY, USA 225 246
    • (2001) Sequential Monte Carlo Methods in Practice , pp. 225-246
    • Liu, J.1    Chen, R.2    Logvinenko, T.3
  • 65
    • 51849134033 scopus 로고    scopus 로고
    • Adaptive dynamic clustered particle filtering for mobile robots global localization
    • Z. Liu, Z. Shi, M. Zhao, and W. Xu Adaptive dynamic clustered particle filtering for mobile robots global localization Journal of Intelligent & Robotic Systems 53 2008 57 85
    • (2008) Journal of Intelligent & Robotic Systems , vol.53 , pp. 57-85
    • Liu, Z.1    Shi, Z.2    Zhao, M.3    Xu, W.4
  • 66
    • 79960608319 scopus 로고    scopus 로고
    • A regularized auxiliary particle filtering approach for system state estimation and battery life prediction
    • J. Liu, W. Wang, and F. Ma A regularized auxiliary particle filtering approach for system state estimation and battery life prediction Smart Materials and Structures 20 7 2011 1 9
    • (2011) Smart Materials and Structures , vol.20 , Issue.7 , pp. 1-9
    • Liu, J.1    Wang, W.2    Ma, F.3
  • 67
    • 0001225908 scopus 로고    scopus 로고
    • Combined parameter and state estimation in simulation based filtering
    • A. Doucet, N. de Freitas, N. Gordon, Springer New York, NY, USA
    • J. Liu, and M. West Combined parameter and state estimation in simulation based filtering A. Doucet, N. de Freitas, N. Gordon, Sequential Monte Carlo Methods in Practice (Chapter 10) 2001 Springer New York, NY, USA
    • (2001) Sequential Monte Carlo Methods in Practice (Chapter 10)
    • Liu, J.1    West, M.2
  • 68
    • 78650767223 scopus 로고    scopus 로고
    • Particle filters and Bayesian inference in financial econometrics
    • H.F. Lopes, and R.S. Tsay Particle filters and Bayesian inference in financial econometrics Journal of Forecasting 30 2011 168 209
    • (2011) Journal of Forecasting , vol.30 , pp. 168-209
    • Lopes, H.F.1    Tsay, R.S.2
  • 69
    • 84892596263 scopus 로고    scopus 로고
    • Coevolution based adaptive Monte Carlo localization
    • R. Luo, B. Hong, and M. Li Coevolution based adaptive Monte Carlo localization Cutting Edge Robotics 2005 279 290
    • (2005) Cutting Edge Robotics , pp. 279-290
    • Luo, R.1    Hong, B.2    Li, M.3
  • 73
    • 84892364201 scopus 로고    scopus 로고
    • Overview of Bayesian sequential Monte Carlo methods for group and extended object tracking
    • 10.1016/j.dsp.2013.11.006
    • L. Mihaylova, A.Y. Carmi, F. Septier, A. Gning, S.K. Pang, and S. Godsill Overview of Bayesian sequential Monte Carlo methods for group and extended object tracking Digital Signal Processing 2014 10.1016/j.dsp.2013.11.006
    • (2014) Digital Signal Processing
    • Mihaylova, L.1    Carmi, A.Y.2    Septier, F.3    Gning, A.4    Pang, S.K.5    Godsill, S.6
  • 76
    • 0003345004 scopus 로고    scopus 로고
    • Improving regularized particle filters
    • A. Doucet, N. de Freitas, N. Gordon, Springer New York, NY, USA
    • C. Musso, N. Oudjane, and F. Legland Improving regularized particle filters A. Doucet, N. de Freitas, N. Gordon, Sequential Monte Carlo methods in practice 2001 Springer New York, NY, USA 247 272
    • (2001) Sequential Monte Carlo Methods in Practice , pp. 247-272
    • Musso, C.1    Oudjane, N.2    Legland, F.3
  • 78
    • 84855726954 scopus 로고    scopus 로고
    • Nonparametric particle filtering and smoothing with quasi-Monte Carlo sampling
    • J.C. Neddermeyer Nonparametric particle filtering and smoothing with quasi-Monte Carlo sampling Journal of Statistical Computation and Simulation 81 11 2011 1361 1379
    • (2011) Journal of Statistical Computation and Simulation , vol.81 , Issue.11 , pp. 1361-1379
    • Neddermeyer, J.C.1
  • 79
    • 54749115304 scopus 로고    scopus 로고
    • Risk-sensitive particle filters for mitigating sample impoverishment
    • U. Orguner, and F. Gustafsson Risk-sensitive particle filters for mitigating sample impoverishment IEEE Transactions on Signal Processing 56 10 2008 5001 5012
    • (2008) IEEE Transactions on Signal Processing , vol.56 , Issue.10 , pp. 5001-5012
    • Orguner, U.1    Gustafsson, F.2
  • 82
    • 69249209720 scopus 로고    scopus 로고
    • A new evolutionary particle filter for the prevention of sample impoverishment
    • S. Park, J.P. Hwang, E. Kim, and H. Kang A new evolutionary particle filter for the prevention of sample impoverishment IEEE Transactions on Signal Processing 13 4 2009 801 809
    • (2009) IEEE Transactions on Signal Processing , vol.13 , Issue.4 , pp. 801-809
    • Park, S.1    Hwang, J.P.2    Kim, E.3    Kang, H.4
  • 84
    • 0000273048 scopus 로고    scopus 로고
    • Annealed importance sampling
    • M.N. Radford Annealed importance sampling Statistics and Computing 11 2 2001 125 139
    • (2001) Statistics and Computing , vol.11 , Issue.2 , pp. 125-139
    • Radford, M.N.1
  • 88
    • 23844494086 scopus 로고    scopus 로고
    • Marginalized particle filters for mixed linear/nonlinear state-space models
    • T. Schön, F. Gustafsson, and P.J. Nordlund Marginalized particle filters for mixed linear/nonlinear state-space models IEEE Transactions on Signal Processing 53 7 2005 2279 2289
    • (2005) IEEE Transactions on Signal Processing , vol.53 , Issue.7 , pp. 2279-2289
    • Schön, T.1    Gustafsson, F.2    Nordlund, P.J.3
  • 91
    • 79960945485 scopus 로고    scopus 로고
    • Recent developments in distributed particle filtering: Towards fast and accurate algorithms
    • A. Simonetto, and T. Keviczky Recent developments in distributed particle filtering: Towards fast and accurate algorithms Estimation and Control of Networked Systems 1 2009
    • (2009) Estimation and Control of Networked Systems , vol.1
    • Simonetto, A.1    Keviczky, T.2
  • 93
    • 84892620744 scopus 로고    scopus 로고
    • Learning and filtering via simulation: Smoothly jittered particle filters
    • F. Thomas, and S. Neil Learning and filtering via simulation: smoothly jittered particle filters ReCALL 2009 1 27
    • (2009) ReCALL , pp. 1-27
    • Thomas, F.1    Neil, S.2
  • 95
    • 34547304784 scopus 로고    scopus 로고
    • A particle swarm optimized particle filter for nonlinear system state estimation
    • Vancouver, Canada
    • Tong, G.; Fang, Z.; Xu, X. (2006). A particle swarm optimized particle filter for nonlinear system state estimation. In Proceedings of IEEE congress on evolutionary computation, Vancouver, Canada (pp. 438-442).
    • (2006) Proceedings of IEEE Congress on Evolutionary Computation , pp. 438-442
    • Tong, G.1    Fang, Z.2    Xu, X.3
  • 99
    • 33749318620 scopus 로고    scopus 로고
    • Improved particle filter in sensor fusion for tracking randomly moving object
    • P. Vadakkepat, and L. Jing Improved particle filter in sensor fusion for tracking randomly moving object IEEE Transaction on Instrumentation and Measurement 55 5 2006 1823 1832
    • (2006) IEEE Transaction on Instrumentation and Measurement , vol.55 , Issue.5 , pp. 1823-1832
    • Vadakkepat, P.1    Jing, L.2
  • 101
    • 74949130817 scopus 로고    scopus 로고
    • Particle filtering in geophysical systems
    • P.J. Van Leeuwen Particle filtering in geophysical systems Monthly Weather Review 137 12 2009 4089 4114
    • (2009) Monthly Weather Review , vol.137 , Issue.12 , pp. 4089-4114
    • Van Leeuwen, P.J.1
  • 102
    • 78650057011 scopus 로고    scopus 로고
    • Nonlinear data assimilation in geosciences: An extremely efficient particle filter
    • P.J. van Leeuwen Nonlinear data assimilation in geosciences: An extremely efficient particle filter Quarterly Journal of the Royal Meteorological Society, Part B 136 653 2010 1991 1999
    • (2010) Quarterly Journal of the Royal Meteorological Society, Part B , vol.136 , Issue.653 , pp. 1991-1999
    • Van Leeuwen, P.J.1
  • 103
    • 53149083015 scopus 로고    scopus 로고
    • Particle filtering for large-dimensional state space with multimodal observation likelihood
    • N. Vaswan Particle filtering for large-dimensional state space with multimodal observation likelihood IEEE Transactions on Signal Processing 56 10 2008 4583 4597
    • (2008) IEEE Transactions on Signal Processing , vol.56 , Issue.10 , pp. 4583-4597
    • Vaswan, N.1
  • 104
    • 33749570123 scopus 로고    scopus 로고
    • Enhancing particle swarm optimization based particle filter tracker
    • Wang, Q.; Xie, L.; Liu, J.; Xiang, Z. (2006). Enhancing particle swarm optimization based particle filter tracker. In ICIC 2006 (pp. 1216-1221).
    • (2006) ICIC 2006 , pp. 1216-1221
    • Wang, Q.1    Xie, L.2    Liu, J.3    Xiang, Z.4
  • 105
    • 84906830447 scopus 로고    scopus 로고
    • Auxiliary particle filtering: Recent developments
    • D. Barber, A.T. Cemgil, S. Chiappa, Cambridge University Press Cambridge
    • N. Whiteley, and A.M. Johansen Auxiliary particle filtering: recent developments D. Barber, A.T. Cemgil, S. Chiappa, Bayesian time series models 2011 Cambridge University Press Cambridge 52 81
    • (2011) Bayesian Time Series Models , pp. 52-81
    • Whiteley, N.1    Johansen, A.M.2
  • 106
    • 77954246280 scopus 로고    scopus 로고
    • Solving, estimating, and selecting nonlinear dynamic models without the curse of dimensionality
    • V. Winschel, and M. Krätzig Solving, estimating, and selecting nonlinear dynamic models without the curse of dimensionality Econometrica 78 2 2010 803 821
    • (2010) Econometrica , vol.78 , Issue.2 , pp. 803-821
    • Winschel, V.1    Krätzig, M.2
  • 108
    • 77955274189 scopus 로고    scopus 로고
    • An ant stochastic decision based particle filter and its convergence
    • B. Xu, J. Zhu, and H. Xu An ant stochastic decision based particle filter and its convergence Signal Processing 90 2010 2731 2748
    • (2010) Signal Processing , vol.90 , pp. 2731-2748
    • Xu, B.1    Zhu, J.2    Xu, H.3
  • 109
    • 23944523772 scopus 로고    scopus 로고
    • Uniform clustered particle filtering for robot localization
    • Portland, OR, US
    • Yang, T.; Aitken, V. (2005). Uniform clustered particle filtering for robot localization. In 2005 American control conference, Portland, OR, US (pp. 4607-4612).
    • (2005) 2005 American Control Conference , pp. 4607-4612
    • Yang, T.1    Aitken, V.2
  • 110
    • 79151480347 scopus 로고    scopus 로고
    • Multi-cue-based CamShift guided particle filter tracking
    • M. Yin, J. Zhang, H. Sun, and W. Gu Multi-cue-based CamShift guided particle filter tracking Expert Systems with Applications 38 5 2011 6313 6318
    • (2011) Expert Systems with Applications , vol.38 , Issue.5 , pp. 6313-6318
    • Yin, M.1    Zhang, J.2    Sun, H.3    Gu, W.4
  • 111
    • 79551499767 scopus 로고    scopus 로고
    • Particle filter with ant colony optimization for frequency offset estimation in OFDM systems with unknown noise distribution
    • Y. Yu, and X. Zheng Particle filter with ant colony optimization for frequency offset estimation in OFDM systems with unknown noise distribution Signal Processing 91 3 2011 1339 1342
    • (2011) Signal Processing , vol.91 , Issue.3 , pp. 1339-1342
    • Yu, Y.1    Zheng, X.2
  • 113
    • 77957827887 scopus 로고    scopus 로고
    • Particle filter based on particle warm optimization resampling for vision tracking
    • J. Zhao, and Z. Li Particle filter based on particle warm optimization resampling for vision tracking Expert Systems with Applications 37 12 2010 8910 8914
    • (2010) Expert Systems with Applications , vol.37 , Issue.12 , pp. 8910-8914
    • Zhao, J.1    Li, Z.2
  • 114
    • 84860541416 scopus 로고    scopus 로고
    • Case study and proofs of ant colony optimisation improved particle filter algorithm
    • J. Zhong, and Y.-F. Fung Case study and proofs of ant colony optimisation improved particle filter algorithm IET Control Theory and Applications 6 5 2012 689 697
    • (2012) IET Control Theory and Applications , vol.6 , Issue.5 , pp. 689-697
    • Zhong, J.1    Fung, Y.-F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.