-
2
-
-
0042418742
-
Temperature dependence of thermal conductivity enhancement for nanofluids
-
Das S.K., Putra N., Theisen P., Roetzel W. Temperature dependence of thermal conductivity enhancement for nanofluids. J. Heat Transfer 2003, 125:567-574.
-
(2003)
J. Heat Transfer
, vol.125
, pp. 567-574
-
-
Das, S.K.1
Putra, N.2
Theisen, P.3
Roetzel, W.4
-
4
-
-
37749004290
-
Thermal conductivity and particle agglomeration in alumina nanofluids: experiment and theory
-
Timofeeva E.V., Gavrilov A.N., McCloskey J.M., Tolmachev Y.V. Thermal conductivity and particle agglomeration in alumina nanofluids: experiment and theory. Phys. Rev. E 2007, 76:612031-6120316.
-
(2007)
Phys. Rev. E
, vol.76
, pp. 612031-6120316
-
-
Timofeeva, E.V.1
Gavrilov, A.N.2
McCloskey, J.M.3
Tolmachev, Y.V.4
-
6
-
-
77955470128
-
The effect of alumina/water nanofluid particle size on thermal conductivity
-
Teng T.P., Hung Y.H., Teng T.C., Mo H.E., Hsu H.G. The effect of alumina/water nanofluid particle size on thermal conductivity. Appl. Thermal Eng. 2010, 30:2213-2218.
-
(2010)
Appl. Thermal Eng.
, vol.30
, pp. 2213-2218
-
-
Teng, T.P.1
Hung, Y.H.2
Teng, T.C.3
Mo, H.E.4
Hsu, H.G.5
-
7
-
-
77955092055
-
The thermal conductivity of alumina nanofluids in water, ethylene glycol, and ethylene glycol+water mixture
-
Beck M.P., Yuan Y., Warrier P., Teja A.S. The thermal conductivity of alumina nanofluids in water, ethylene glycol, and ethylene glycol+water mixture. J. Nanoparticles Res. 2010, 12:1469-1477.
-
(2010)
J. Nanoparticles Res.
, vol.12
, pp. 1469-1477
-
-
Beck, M.P.1
Yuan, Y.2
Warrier, P.3
Teja, A.S.4
-
8
-
-
79961205804
-
An investigation on thermal conductivity and viscosity of water based nanofluids
-
Tavman I., Turgut A. An investigation on thermal conductivity and viscosity of water based nanofluids. Micro. Microsys. 2010, 139-162.
-
(2010)
Micro. Microsys.
, pp. 139-162
-
-
Tavman, I.1
Turgut, A.2
-
9
-
-
67349152677
-
Investigation of thermal conductivity and viscosity of ethylene glycol based ZnO nanofluid
-
Yu W., Xie H., Chen L., Li Y. Investigation of thermal conductivity and viscosity of ethylene glycol based ZnO nanofluid. Therm. Acta 2009, 491:92-96.
-
(2009)
Therm. Acta
, vol.491
, pp. 92-96
-
-
Yu, W.1
Xie, H.2
Chen, L.3
Li, Y.4
-
10
-
-
79954597253
-
Experimental investigation on thermal conductivity and viscosity of aluminum nitride nanofluid
-
Yu W., Xie H., Li Y., Chen L. Experimental investigation on thermal conductivity and viscosity of aluminum nitride nanofluid. Particuology 2011, 9:187-191.
-
(2011)
Particuology
, vol.9
, pp. 187-191
-
-
Yu, W.1
Xie, H.2
Li, Y.3
Chen, L.4
-
11
-
-
84892542958
-
-
Release on the IAPWS Formulation 2011 for the Thermal Conductivity of Ordinary Water Substance (September). (Online) (Cited: 9.10.2012)
-
Release on the IAPWS Formulation 2011 for the Thermal Conductivity of Ordinary Water Substance (September 2011). (Online) (Cited: 9.10.2012). <>. http://www.iapws.org.
-
(2011)
-
-
-
12
-
-
84865023901
-
Measurement of the thermal conductivity of titania and alumina nanofluids
-
Yiamsawasd T., Dalkilic A.S., Wongwises S. Measurement of the thermal conductivity of titania and alumina nanofluids. Therm. Acta 2012, 545:48-56.
-
(2012)
Therm. Acta
, vol.545
, pp. 48-56
-
-
Yiamsawasd, T.1
Dalkilic, A.S.2
Wongwises, S.3
-
14
-
-
18144386609
-
Thermal conductivity of nanoscale colloidal solutions (nanofluids)
-
Prasher R., Bhattacharya P., Phelan P.E. Thermal conductivity of nanoscale colloidal solutions (nanofluids). Phys. Rev. Lett. 2005, 94:025901.
-
(2005)
Phys. Rev. Lett.
, vol.94
, pp. 025901
-
-
Prasher, R.1
Bhattacharya, P.2
Phelan, P.E.3
-
16
-
-
0017551342
-
The effect of Brownian motion on the bulk stress in a suspension of spherical particles
-
Batchelor G.K. The effect of Brownian motion on the bulk stress in a suspension of spherical particles. J. Fluid Mech. 1977, 83-97.
-
(1977)
J. Fluid Mech.
, pp. 83-97
-
-
Batchelor, G.K.1
-
17
-
-
84892289943
-
A mechanism for non-Newtonian flow in suspensions of rigid spheres
-
Krieger I.M., Dougherty T.J. A mechanism for non-Newtonian flow in suspensions of rigid spheres. Trans. Soc. Rheol. 1959, 3:137-152.
-
(1959)
Trans. Soc. Rheol.
, vol.3
, pp. 137-152
-
-
Krieger, I.M.1
Dougherty, T.J.2
-
18
-
-
79961179051
-
Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids
-
Corcione M. Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids. Energy Conv. Manage 2011, 52:789-793.
-
(2011)
Energy Conv. Manage
, vol.52
, pp. 789-793
-
-
Corcione, M.1
-
19
-
-
0041556309
-
Thermal entry length solutions for the circular tube and parallel plates
-
3rd National Heat Mass Trans. Conf.
-
R.K. Shah, Thermal entry length solutions for the circular tube and parallel plates, in: 3rd National Heat Mass Trans. Conf., 1975, pp. 11-75.
-
(1975)
, pp. 11-75
-
-
Shah, R.K.1
-
21
-
-
0032043092
-
Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide
-
Pak B.C., Cho Y.I. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide. Exp. Heat Transfer 1998, 11:151-170.
-
(1998)
Exp. Heat Transfer
, vol.11
, pp. 151-170
-
-
Pak, B.C.1
Cho, Y.I.2
-
22
-
-
0343192359
-
Conceptions for Heat Transfer Correlations
-
Xuan Y., Roetzel W. Conceptions for Heat Transfer Correlations. Int. J. Heat Mass Transfer 2000, 43:3701-3707.
-
(2000)
Int. J. Heat Mass Transfer
, vol.43
, pp. 3701-3707
-
-
Xuan, Y.1
Roetzel, W.2
|