-
1
-
-
0001056718
-
Hölder regularity and dimension bounds for random curves
-
Aizenman M., Burchard A. Hölder regularity and dimension bounds for random curves. Duke Math. J. 1999, 99(3):419-453.
-
(1999)
Duke Math. J.
, vol.99
, Issue.3
, pp. 419-453
-
-
Aizenman, M.1
Burchard, A.2
-
2
-
-
0004542587
-
Infinite conformal symmetry of critical fluctuations in two dimensions
-
Belavin A.A., Polyakov A.M., Zamolodchikov A.B. Infinite conformal symmetry of critical fluctuations in two dimensions. J. Stat. Phys. 1984, 34(5-6):763-774.
-
(1984)
J. Stat. Phys.
, vol.34
, Issue.5-6
, pp. 763-774
-
-
Belavin, A.A.1
Polyakov, A.M.2
Zamolodchikov, A.B.3
-
4
-
-
84892506874
-
Crossing probabilities in topological rectangles for the critical planar FK Ising model
-
Preprint
-
D. Chelkak, H. Duminil-Copin, Clément Hongler, Crossing probabilities in topological rectangles for the critical planar FK Ising model, Preprint, , 2013. arxiv:1312.7785.
-
(2013)
-
-
Chelkak, D.1
Duminil-Copin, H.2
Clément Hongler3
-
6
-
-
84880510730
-
Holomorphic spinor observables in the critical Ising model
-
Chelkak D., Izyurov K. Holomorphic spinor observables in the critical Ising model. Commun. Math. Phys. 2013, 322(2):303-332.
-
(2013)
Commun. Math. Phys.
, vol.322
, Issue.2
, pp. 303-332
-
-
Chelkak, D.1
Izyurov, K.2
-
7
-
-
84862730032
-
Universality in the 2D Ising model and conformal invariance of fermionic observables
-
Chelkak D., Smirnov S. Universality in the 2D Ising model and conformal invariance of fermionic observables. Invent. Math. 2012, 189(3):515-580.
-
(2012)
Invent. Math.
, vol.189
, Issue.3
, pp. 515-580
-
-
Chelkak, D.1
Smirnov, S.2
-
8
-
-
79957682413
-
Connection probabilities and RSW-type bounds for the two-dimensional FK Ising model
-
Duminil-Copin H., Hongler C., Nolin P. Connection probabilities and RSW-type bounds for the two-dimensional FK Ising model. Commun. Pure Appl. Math. 2011, 64(9):1165-1198.
-
(2011)
Commun. Pure Appl. Math.
, vol.64
, Issue.9
, pp. 1165-1198
-
-
Duminil-Copin, H.1
Hongler, C.2
Nolin, P.3
-
9
-
-
84859023495
-
Conformal invariance of lattice models
-
Amer. Math. Soc., Providence, RI, Probability and Statistical Physics in Two and More Dimensions
-
Duminil-Copin H., Smirnov S. Conformal invariance of lattice models. Clay Math. Proc. 2012, vol. 15:213-276. Amer. Math. Soc., Providence, RI.
-
(2012)
Clay Math. Proc.
, vol.15
, pp. 213-276
-
-
Duminil-Copin, H.1
Smirnov, S.2
-
11
-
-
84890491180
-
The energy density in the planar Ising model
-
Hongler C., Smirnov S. The energy density in the planar Ising model. Acta. Math. 2013, 211(2):191-225.
-
(2013)
Acta. Math.
, vol.211
, Issue.2
, pp. 191-225
-
-
Hongler, C.1
Smirnov, S.2
-
13
-
-
33646527544
-
Conformally Invariant Processes in the Plane
-
American Mathematical Society, Providence, RI
-
Lawler G.F. Conformally Invariant Processes in the Plane. Mathematical Surveys and Monographs 2005, vol. 114. American Mathematical Society, Providence, RI.
-
(2005)
Mathematical Surveys and Monographs
, vol.114
-
-
Lawler, G.F.1
-
14
-
-
2142809825
-
Conformal invariance of planar loop-erased random walks and uniform spanning trees
-
Lawler G.F., Schramm O., Werner W. Conformal invariance of planar loop-erased random walks and uniform spanning trees. Ann. Probab. 2004, 32(1B):939-995.
-
(2004)
Ann. Probab.
, vol.32
, Issue.1 B
, pp. 939-995
-
-
Lawler, G.F.1
Schramm, O.2
Werner, W.3
-
16
-
-
0000614574
-
Scaling limits of loop-erased random walks and uniform spanning trees
-
Schramm O. Scaling limits of loop-erased random walks and uniform spanning trees. Isr. J. Math. 2000, 118:221-288.
-
(2000)
Isr. J. Math.
, vol.118
, pp. 221-288
-
-
Schramm, O.1
-
17
-
-
84878094646
-
Towards conformal invariance of 2D lattice models
-
Eur. Math. Soc., Zurich
-
Smirnov S. Towards conformal invariance of 2D lattice models. International Congress of Mathematicians, vol. II 2006, 1421-1451. Eur. Math. Soc., Zurich.
-
(2006)
International Congress of Mathematicians, vol. II
, pp. 1421-1451
-
-
Smirnov, S.1
-
18
-
-
77957693837
-
Conformal invariance in random cluster models. I. Holomorphic fermions in the Ising model
-
Smirnov S. Conformal invariance in random cluster models. I. Holomorphic fermions in the Ising model. Ann. Math. 2010, 172(2):1435-1467.
-
(2010)
Ann. Math.
, vol.172
, Issue.2
, pp. 1435-1467
-
-
Smirnov, S.1
|