-
2
-
-
0021039638
-
The potential of predators for pest control
-
Luff M.L. The potential of predators for pest control. Agricult. Ecosys. Environ. 1983, 10(2):159-181.
-
(1983)
Agricult. Ecosys. Environ.
, vol.10
, Issue.2
, pp. 159-181
-
-
Luff, M.L.1
-
3
-
-
2142654992
-
Soybean aphid predators and their use in integrated pest management
-
Rutledge C.E., O'Neil R.J., Fox T.B., Landis D.A. Soybean aphid predators and their use in integrated pest management. Ann. Entomol. Soc. Am. 2004, 97(2):240-248.
-
(2004)
Ann. Entomol. Soc. Am.
, vol.97
, Issue.2
, pp. 240-248
-
-
Rutledge, C.E.1
O'Neil, R.J.2
Fox, T.B.3
Landis, D.A.4
-
4
-
-
33747887669
-
The prey-dependet consumption two-prey one-predator models with stage-structure for the predator and imulsive effects
-
Song X., Xiang Z. The prey-dependet consumption two-prey one-predator models with stage-structure for the predator and imulsive effects. J. Theoret. Biol. 2006, 242:683-698.
-
(2006)
J. Theoret. Biol.
, vol.242
, pp. 683-698
-
-
Song, X.1
Xiang, Z.2
-
5
-
-
78049297005
-
Impulsive control in a stage-structure population model with birth pulses
-
Ma Z., Yang J., Jiang G. Impulsive control in a stage-structure population model with birth pulses. Appl. Math. Comput. 2010, 217(7):3453-3460.
-
(2010)
Appl. Math. Comput.
, vol.217
, Issue.7
, pp. 3453-3460
-
-
Ma, Z.1
Yang, J.2
Jiang, G.3
-
6
-
-
48249121875
-
Qualitative analysis for a ratio-dependent predator-prey model with stage structure and diffusion
-
Wang Z., Wu J. Qualitative analysis for a ratio-dependent predator-prey model with stage structure and diffusion. Nonlinear Anal. RWA 2008, 9(5):2270-2287.
-
(2008)
Nonlinear Anal. RWA
, vol.9
, Issue.5
, pp. 2270-2287
-
-
Wang, Z.1
Wu, J.2
-
7
-
-
0031124171
-
A predator-prey system with stage structure for predator
-
Wang W.D., Chen L.S. A predator-prey system with stage structure for predator. Comput. Math. Appl. 1997, 33(8):83-91.
-
(1997)
Comput. Math. Appl.
, vol.33
, Issue.8
, pp. 83-91
-
-
Wang, W.D.1
Chen, L.S.2
-
8
-
-
43049146573
-
Stability and Hopf bifurcation in a ratio-dependent predator-prey system with stage structure
-
Xu R., Ma Z. Stability and Hopf bifurcation in a ratio-dependent predator-prey system with stage structure. Chaos Solitons Fractals 2008, 38(3):669-684.
-
(2008)
Chaos Solitons Fractals
, vol.38
, Issue.3
, pp. 669-684
-
-
Xu, R.1
Ma, Z.2
-
9
-
-
77957992371
-
Hopf bifurcation of a predator-prey system with stage structure and harvesting
-
Ge Z., Yan J. Hopf bifurcation of a predator-prey system with stage structure and harvesting. Nonlinear Anal. TMA 2011, 74(2):652-660.
-
(2011)
Nonlinear Anal. TMA
, vol.74
, Issue.2
, pp. 652-660
-
-
Ge, Z.1
Yan, J.2
-
10
-
-
84887187961
-
Mathematical analysis of a delayed stage-structured predator-prey model with impulsive diffusion between two predators territories
-
Dhar J., Jatav K.S. Mathematical analysis of a delayed stage-structured predator-prey model with impulsive diffusion between two predators territories. Ecol. Complex. 2013, 16:59-67. 10.1016/j.ecocom.2012.08.001.
-
(2013)
Ecol. Complex.
, vol.16
, pp. 59-67
-
-
Dhar, J.1
Jatav, K.S.2
-
11
-
-
61749089752
-
Dynamic analysis of a pest management SEI model with saturation incidence concerning impulsive control strategy
-
Xiang Z., Li Y., Song X. Dynamic analysis of a pest management SEI model with saturation incidence concerning impulsive control strategy. Nonlinear Anal. RWA 2009, 10(4):2335-2345.
-
(2009)
Nonlinear Anal. RWA
, vol.10
, Issue.4
, pp. 2335-2345
-
-
Xiang, Z.1
Li, Y.2
Song, X.3
-
12
-
-
77956062959
-
Mathematics analysis and chaos in an ecological model with an impulsive control strategy
-
Yu H., Zhong S., Agarwal R.P. Mathematics analysis and chaos in an ecological model with an impulsive control strategy. Commun. Nonlinear Sci. Numer. Simul. 2011, 16(2):776-786.
-
(2011)
Commun. Nonlinear Sci. Numer. Simul.
, vol.16
, Issue.2
, pp. 776-786
-
-
Yu, H.1
Zhong, S.2
Agarwal, R.P.3
-
13
-
-
34548398149
-
Pest management through continuous and impulsive control strategies
-
Zhang H., Jiao J.J., Chen L.S. Pest management through continuous and impulsive control strategies. Biosystems 2007, 90(2):350-361.
-
(2007)
Biosystems
, vol.90
, Issue.2
, pp. 350-361
-
-
Zhang, H.1
Jiao, J.J.2
Chen, L.S.3
-
14
-
-
84862813472
-
Dynamics of an ecological model with impulsive control strategy and distributed time delay
-
Zhao M., Wang X., Yu H., Zhu J. Dynamics of an ecological model with impulsive control strategy and distributed time delay. Math. Comput. Simul. 2012, 82(8):1432-1444.
-
(2012)
Math. Comput. Simul.
, vol.82
, Issue.8
, pp. 1432-1444
-
-
Zhao, M.1
Wang, X.2
Yu, H.3
Zhu, J.4
-
18
-
-
0347269498
-
Bifurcation of nontrivial periodic solution of impulsive differential equations arising chemotherapeutic treatment
-
Lakmeche A., Arino O. Bifurcation of nontrivial periodic solution of impulsive differential equations arising chemotherapeutic treatment. Dyn. Contin. Discrete Impuls. Syst. 2000, 7:265-287.
-
(2000)
Dyn. Contin. Discrete Impuls. Syst.
, vol.7
, pp. 265-287
-
-
Lakmeche, A.1
Arino, O.2
-
19
-
-
0343462474
-
Categories of chaos and fractal basin boundaries in forced predator-prey models
-
Vandermeer J., Stone L., Blasius B. Categories of chaos and fractal basin boundaries in forced predator-prey models. Chaos Solitons Fractals 2001, 12:265-276.
-
(2001)
Chaos Solitons Fractals
, vol.12
, pp. 265-276
-
-
Vandermeer, J.1
Stone, L.2
Blasius, B.3
-
20
-
-
0032213158
-
Pulse vaccination strategy in the SIR epidemic model
-
Shulgin B., Stone L., Agur Z. Pulse vaccination strategy in the SIR epidemic model. Bull. Math. Biol. 1998, 60:1-26.
-
(1998)
Bull. Math. Biol.
, vol.60
, pp. 1-26
-
-
Shulgin, B.1
Stone, L.2
Agur, Z.3
-
21
-
-
80051824640
-
The dynamics of a stage-structured predator-prey system with impulsive effect and Holling mass defence
-
Huang C.Y., Li Y.J., Huo H.F. The dynamics of a stage-structured predator-prey system with impulsive effect and Holling mass defence. Appl. Math. Model. 2012, 36:87-96.
-
(2012)
Appl. Math. Model.
, vol.36
, pp. 87-96
-
-
Huang, C.Y.1
Li, Y.J.2
Huo, H.F.3
-
22
-
-
84873408948
-
Impulsive control for a predator-prey Gompertz system with stage-structure
-
Huang C.Y., Wang X.H. Impulsive control for a predator-prey Gompertz system with stage-structure. J. Appl. Math. Comput. 2013, 41:1-15.
-
(2013)
J. Appl. Math. Comput.
, vol.41
, pp. 1-15
-
-
Huang, C.Y.1
Wang, X.H.2
-
23
-
-
67349152904
-
Dynamics of a two-prey one-predator system with Watt-type functional response and impulsive control strategy
-
Wang X., Wang W., Lin X. Dynamics of a two-prey one-predator system with Watt-type functional response and impulsive control strategy. Chaos Solitons Fractals 2009, 40:2392-2404.
-
(2009)
Chaos Solitons Fractals
, vol.40
, pp. 2392-2404
-
-
Wang, X.1
Wang, W.2
Lin, X.3
-
24
-
-
18844441739
-
A food chain model with impulsive perturbations and Holling IV functional response
-
Zhang S., Wang F., Chen L.S. A food chain model with impulsive perturbations and Holling IV functional response. Chaos Solitons Fractals 2005, 26(3):855-866.
-
(2005)
Chaos Solitons Fractals
, vol.26
, Issue.3
, pp. 855-866
-
-
Zhang, S.1
Wang, F.2
Chen, L.S.3
-
25
-
-
13444288053
-
A Holling II functional response food chain model with impulsive perturbations
-
Zhang S., Chen L.S. A Holling II functional response food chain model with impulsive perturbations. Chaos Solitons Fractals 2005, 24(5):1269-1278.
-
(2005)
Chaos Solitons Fractals
, vol.24
, Issue.5
, pp. 1269-1278
-
-
Zhang, S.1
Chen, L.S.2
-
26
-
-
40749161156
-
Chaotic behavior of a three-species Beddington-type system with impulsive perturbations
-
Wang W., Wang H., Li Z. Chaotic behavior of a three-species Beddington-type system with impulsive perturbations. Chaos Solitons Fractals 2008, 37(2):438-443.
-
(2008)
Chaos Solitons Fractals
, vol.37
, Issue.2
, pp. 438-443
-
-
Wang, W.1
Wang, H.2
Li, Z.3
-
27
-
-
64049103217
-
The dynamical behaviors of a food chain model with impulsive effect and Ivlev functional response
-
Xiang Z., Song X. The dynamical behaviors of a food chain model with impulsive effect and Ivlev functional response. Chaos Solitons Fractals 2009, 39(5):2282-2293.
-
(2009)
Chaos Solitons Fractals
, vol.39
, Issue.5
, pp. 2282-2293
-
-
Xiang, Z.1
Song, X.2
-
29
-
-
0019430734
-
Global stability of population models
-
Cull P. Global stability of population models. Bull. Math. Biol. 1981, 43(1):47-58.
-
(1981)
Bull. Math. Biol.
, vol.43
, Issue.1
, pp. 47-58
-
-
Cull, P.1
|