메뉴 건너뛰기




Volumn 125, Issue , 2013, Pages 57-67

Coastal 'Big Data' and nature-inspired computation: Prediction potentials, uncertainties, and knowledge derivation of neural networks for an algal metric

Author keywords

Artificial neural networks; Decision trees; Empirical models; Environmental informatics; In situ chlorophyll; Sarasota Bay

Indexed keywords

ACCURACY ASSESSMENT; ALGA; ALGORITHM; ARTIFICIAL NEURAL NETWORK; CHLOROPHYLL; DATA ACQUISITION; DATA SET; DATABASE; DECISION ANALYSIS; EMPIRICAL ANALYSIS; ENVIRONMENTAL MONITORING; IN SITU MEASUREMENT; PREDICTION; SALINITY; SENSOR; TURBIDITY; UNCERTAINTY ANALYSIS; WATER TEMPERATURE;

EID: 84892440534     PISSN: 02727714     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ecss.2013.04.001     Document Type: Article
Times cited : (15)

References (54)
  • 2
    • 84861473762 scopus 로고    scopus 로고
    • The Aspen Institute, Washington, District of Columbia USA
    • Bollier D. The Promise and Peril of Big Data 2010, 56. The Aspen Institute, Washington, District of Columbia USA.
    • (2010) The Promise and Peril of Big Data , pp. 56
    • Bollier, D.1
  • 4
    • 79651474138 scopus 로고    scopus 로고
    • An overview of recent remote sensing and GIS based research in ecological informatics
    • Boyd D.S., Foody G.M. An overview of recent remote sensing and GIS based research in ecological informatics. Ecological Informatics 2011, 6:25-36.
    • (2011) Ecological Informatics , vol.6 , pp. 25-36
    • Boyd, D.S.1    Foody, G.M.2
  • 5
    • 54049142470 scopus 로고    scopus 로고
    • Quantitative identification of disturbance thresholds in support of aquatic resource management
    • Brenden T.O., Wang L., Zhenming S. Quantitative identification of disturbance thresholds in support of aquatic resource management. Environmental Management 2008, 42:821-832.
    • (2008) Environmental Management , vol.42 , pp. 821-832
    • Brenden, T.O.1    Wang, L.2    Zhenming, S.3
  • 6
    • 30144440914 scopus 로고    scopus 로고
    • Receiver operating characteristics curves and related decision measures: a tutorial
    • Brown C.D., Davis H.T. Receiver operating characteristics curves and related decision measures: a tutorial. Chemometrics and Intelligent Laboratory Systems 2006, 80:24-38.
    • (2006) Chemometrics and Intelligent Laboratory Systems , vol.80 , pp. 24-38
    • Brown, C.D.1    Davis, H.T.2
  • 8
    • 33847773326 scopus 로고    scopus 로고
    • Fundamentals of natural computing: an overview
    • de Castro L.N. Fundamentals of natural computing: an overview. Physics of Life Reviews 2007, 4:1-36.
    • (2007) Physics of Life Reviews , vol.4 , pp. 1-36
    • de Castro, L.N.1
  • 11
    • 0345306953 scopus 로고    scopus 로고
    • Water quality in the Caloosahatchee estuary, San Carlos Bay and Pine Island Sound, Florida
    • Charlotte Harbor National Estuary Program, Tampa, Florida, S.F. Treat (Ed.)
    • Doering P.H., Chamberlain R.H. Water quality in the Caloosahatchee estuary, San Carlos Bay and Pine Island Sound, Florida. Proceedings of the Charlotte Harbor Public Conference and Technical Symposium 1998, 229-240. Charlotte Harbor National Estuary Program, Tampa, Florida. S.F. Treat (Ed.).
    • (1998) Proceedings of the Charlotte Harbor Public Conference and Technical Symposium , pp. 229-240
    • Doering, P.H.1    Chamberlain, R.H.2
  • 12
    • 0002101112 scopus 로고    scopus 로고
    • Astatistical perspective on knowledge discovery in databases
    • AAAI Press-The MIT Press, Cambridge, Massachusetts, U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, R. Uthurusamy (Eds.)
    • Elder J.F., Pregibon D. Astatistical perspective on knowledge discovery in databases. Advances in Knowledge Discovery and Data Mining 1996, 83-116. AAAI Press-The MIT Press, Cambridge, Massachusetts. U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, R. Uthurusamy (Eds.).
    • (1996) Advances in Knowledge Discovery and Data Mining , pp. 83-116
    • Elder, J.F.1    Pregibon, D.2
  • 13
    • 0001504953 scopus 로고
    • Temperature and phytoplankton growth in the sea
    • Eppley R.W. Temperature and phytoplankton growth in the sea. Fishery Bulletin 1972, 70:1063-1085.
    • (1972) Fishery Bulletin , vol.70 , pp. 1063-1085
    • Eppley, R.W.1
  • 15
    • 0003080228 scopus 로고
    • Salt and osmotic balance
    • Academic Press, New York-London, R.A. Lewin (Ed.)
    • Guillard R.R.L. Salt and osmotic balance. Physiology and Biochemistry of Algae: 929 1962, 529-540. Academic Press, New York-London. R.A. Lewin (Ed.).
    • (1962) Physiology and Biochemistry of Algae: 929 , pp. 529-540
    • Guillard, R.R.L.1
  • 16
    • 0343962246 scopus 로고    scopus 로고
    • The role of characteristic coefficients of variation in uncertainty and sensitivity analyses, with examples related to the structuring of lake eutrophication models
    • Håkanson L. The role of characteristic coefficients of variation in uncertainty and sensitivity analyses, with examples related to the structuring of lake eutrophication models. Ecological Modelling 2000, 131:1-20.
    • (2000) Ecological Modelling , vol.131 , pp. 1-20
    • Håkanson, L.1
  • 17
    • 0034681990 scopus 로고    scopus 로고
    • Reliability of estimating chlorophyll a concentrations in Antarctic waters by measurement of in situ chlorophyll a fluorescence
    • Holm-Hansen O., Amos A.F., Hewes C.D. Reliability of estimating chlorophyll a concentrations in Antarctic waters by measurement of in situ chlorophyll a fluorescence. Marine Ecology Progress Series 2000, 196:103-110.
    • (2000) Marine Ecology Progress Series , vol.196 , pp. 103-110
    • Holm-Hansen, O.1    Amos, A.F.2    Hewes, C.D.3
  • 18
    • 49249099293 scopus 로고    scopus 로고
    • The land/ocean biogeochemical observatory: a robust networked mooring system for continuously monitoring complex biogeochemical cycles in estuaries
    • Jannasch H.W., Coletti L.J., Johnson K.S., Fitzwater S.E., Needoba J.A., Plant J.N. The land/ocean biogeochemical observatory: a robust networked mooring system for continuously monitoring complex biogeochemical cycles in estuaries. Limnology and Oceanography, Methods 2008, 6:263-276.
    • (2008) Limnology and Oceanography, Methods , vol.6 , pp. 263-276
    • Jannasch, H.W.1    Coletti, L.J.2    Johnson, K.S.3    Fitzwater, S.E.4    Needoba, J.A.5    Plant, J.N.6
  • 19
    • 31444432537 scopus 로고    scopus 로고
    • Prediction and elucidation of population dynamics of the blue-green algae Microcystis aeruginosa and the diatom Ste- phanodiscus hantzschii in the Nakdong River-Reservoir system (South Korea) by a recurrent artificial neural network
    • Springer-Verlag, Berlin, F. Recknagel (Ed.)
    • Jeong K.-S., Recknagel F., Joo G.-J. Prediction and elucidation of population dynamics of the blue-green algae Microcystis aeruginosa and the diatom Ste- phanodiscus hantzschii in the Nakdong River-Reservoir system (South Korea) by a recurrent artificial neural network. Ecological Informatics; Understanding Ecology by Biologically-inspired Computation 2003, 195-213. Springer-Verlag, Berlin. F. Recknagel (Ed.).
    • (2003) Ecological Informatics; Understanding Ecology by Biologically-inspired Computation , pp. 195-213
    • Jeong, K.-S.1    Recknagel, F.2    Joo, G.-J.3
  • 20
    • 79960702579 scopus 로고    scopus 로고
    • WIT Press, Southhampton, S.E. Jørgensen, T.-S. Chon, F.A. Recknagel (Eds.)
    • Handbook of Ecological Modelling and Informatics 2009, 431. WIT Press, Southhampton. S.E. Jørgensen, T.-S. Chon, F.A. Recknagel (Eds.).
    • (2009) Handbook of Ecological Modelling and Informatics , pp. 431
  • 22
  • 23
    • 85097409379 scopus 로고    scopus 로고
    • Dynamics of estuarine phytoplankton assemblages in Mex Bay, Alexandria (Egypt): influence of salinity gradients
    • Mikhail S.K. Dynamics of estuarine phytoplankton assemblages in Mex Bay, Alexandria (Egypt): influence of salinity gradients. Egyptian Journal of Aquatic Biology and Fisheries 2008, 12:231-251.
    • (2008) Egyptian Journal of Aquatic Biology and Fisheries , vol.12 , pp. 231-251
    • Mikhail, S.K.1
  • 24
    • 0029505298 scopus 로고
    • Testing the temporal and spatial validity of site-specific models derived from airborne remote sensing of phytoplankton
    • Millie D.F., Vinyard B.T., Baker M.C., Tucker C.S. Testing the temporal and spatial validity of site-specific models derived from airborne remote sensing of phytoplankton. Canadian Journal of Fisheries and Aquatic Sciences 1995, 52:1094-1107.
    • (1995) Canadian Journal of Fisheries and Aquatic Sciences , vol.52 , pp. 1094-1107
    • Millie, D.F.1    Vinyard, B.T.2    Baker, M.C.3    Tucker, C.S.4
  • 25
    • 4444235113 scopus 로고    scopus 로고
    • Intra-annual variability of water quality and phytoplankton within the St. Lucie River Estuary (Florida, USA): a quantitative perspective
    • Millie D.F., Carrick H.J., Doerong P.H., Steidinger K.A. Intra-annual variability of water quality and phytoplankton within the St. Lucie River Estuary (Florida, USA): a quantitative perspective. Estuarine Coastal and Shelf Science 2004, 61:137-149.
    • (2004) Estuarine Coastal and Shelf Science , vol.61 , pp. 137-149
    • Millie, D.F.1    Carrick, H.J.2    Doerong, P.H.3    Steidinger, K.A.4
  • 26
    • 33645529940 scopus 로고    scopus 로고
    • Neural network modeling of estuarine indicators: hindcasting phytoplankton biomass and net ecosystem production in the Neuse (North Carolina) and Trout (Florida) Rivers
    • Millie D.F., Weckman G.R., Paerl H.W., Pinckney J.L., Bendis B.J., Pigg R.J., Fahnenstiel G.L. Neural network modeling of estuarine indicators: hindcasting phytoplankton biomass and net ecosystem production in the Neuse (North Carolina) and Trout (Florida) Rivers. Ecological Indicators 2006, 6:589-608.
    • (2006) Ecological Indicators , vol.6 , pp. 589-608
    • Millie, D.F.1    Weckman, G.R.2    Paerl, H.W.3    Pinckney, J.L.4    Bendis, B.J.5    Pigg, R.J.6    Fahnenstiel, G.L.7
  • 27
    • 33645502732 scopus 로고    scopus 로고
    • Modeling phytoplankton abundance in Saginaw Bay, Lake Huron: using artificial neural networks to discern functional influence of environmental variables and relevance to a Great Lakes Observing System
    • Millie D.F., Pigg R., Tester P.A., Dyble J., Litaker R.W., Carrick H.J., Fahnenstiel G.L. Modeling phytoplankton abundance in Saginaw Bay, Lake Huron: using artificial neural networks to discern functional influence of environmental variables and relevance to a Great Lakes Observing System. Journal of Phycology 2006, 42:336-349.
    • (2006) Journal of Phycology , vol.42 , pp. 336-349
    • Millie, D.F.1    Pigg, R.2    Tester, P.A.3    Dyble, J.4    Litaker, R.W.5    Carrick, H.J.6    Fahnenstiel, G.L.7
  • 29
    • 84861662434 scopus 로고    scopus 로고
    • Modeling algal abundance with artificial neural networks: demonstration of a heuristic, 'Grey-Box' technique to deconvolve and quantify environmental influences
    • Millie D.F., Weckman G.R., Young W.A., Ivey J.E., Fahnenstiel G.L. Modeling algal abundance with artificial neural networks: demonstration of a heuristic, 'Grey-Box' technique to deconvolve and quantify environmental influences. Environmental Modelling and Software 2012, 38:27-39.
    • (2012) Environmental Modelling and Software , vol.38 , pp. 27-39
    • Millie, D.F.1    Weckman, G.R.2    Young, W.A.3    Ivey, J.E.4    Fahnenstiel, G.L.5
  • 31
    • 0034290473 scopus 로고    scopus 로고
    • An artificial neural network approach for studying phytoplankton succession
    • Olden J.D. An artificial neural network approach for studying phytoplankton succession. Hydrobiologia 2000, 436:131-143.
    • (2000) Hydrobiologia , vol.436 , pp. 131-143
    • Olden, J.D.1
  • 32
    • 0037102687 scopus 로고    scopus 로고
    • Illuminating the "black box": understanding variable contributions in artificial neural net- works
    • Olden J.D., Jackson D.A. Illuminating the "black box": understanding variable contributions in artificial neural net- works. Ecological Modelling 2002, 154:135-150.
    • (2002) Ecological Modelling , vol.154 , pp. 135-150
    • Olden, J.D.1    Jackson, D.A.2
  • 33
    • 3242721368 scopus 로고    scopus 로고
    • An accurate comparison of methods for quantifying variable importance in artificial neural networks using simulated data
    • Olden J.D., Joy A.K., Death R.G. An accurate comparison of methods for quantifying variable importance in artificial neural networks using simulated data. Ecological Modelling 2004, 178:389-397.
    • (2004) Ecological Modelling , vol.178 , pp. 389-397
    • Olden, J.D.1    Joy, A.K.2    Death, R.G.3
  • 34
    • 0024234191 scopus 로고
    • Nuisance phytoplankton blooms in coastal, estuarine, and inland waters
    • Paerl H.W. Nuisance phytoplankton blooms in coastal, estuarine, and inland waters. Limnology & Oceanography 1988, 33:823-847.
    • (1988) Limnology & Oceanography , vol.33 , pp. 823-847
    • Paerl, H.W.1
  • 36
    • 0032574941 scopus 로고    scopus 로고
    • Eco-system responses to internal and watershed organic matter loading: consequences for hypoxia in the eutrophying Neuse River Estuary, North Carolina, USA
    • Paerl H.W., Pinckney J.L., Fear J.M., Peierls B.L. Eco-system responses to internal and watershed organic matter loading: consequences for hypoxia in the eutrophying Neuse River Estuary, North Carolina, USA. Marine Ecology Progress Series 1998, 166:17-25.
    • (1998) Marine Ecology Progress Series , vol.166 , pp. 17-25
    • Paerl, H.W.1    Pinckney, J.L.2    Fear, J.M.3    Peierls, B.L.4
  • 37
    • 0142059818 scopus 로고    scopus 로고
    • How much variance is explained by ecologists? Additional perspectives
    • Peck M.S., Leffler A.J., Flint S.D., Ryel R.J. How much variance is explained by ecologists? Additional perspectives. Oecologia 2003, 137:161-170.
    • (2003) Oecologia , vol.137 , pp. 161-170
    • Peck, M.S.1    Leffler, A.J.2    Flint, S.D.3    Ryel, R.J.4
  • 39
    • 84865422082 scopus 로고    scopus 로고
    • Current online monitoring technology for surveillance of algal blooms, potential toxicity, and physicalechemical structure in rivers, reservoirs, and lakes
    • American Water Works Association, Denver, Colorado
    • Reed R.E., Burkholder J.M., Allen E.H. Current online monitoring technology for surveillance of algal blooms, potential toxicity, and physicalechemical structure in rivers, reservoirs, and lakes. American Water Works Association, Manual M57, Algae 2010, 1-24. American Water Works Association, Denver, Colorado.
    • (2010) American Water Works Association, Manual M57, Algae , pp. 1-24
    • Reed, R.E.1    Burkholder, J.M.2    Allen, E.H.3
  • 41
    • 77954325115 scopus 로고    scopus 로고
    • Effect of salinity on growth, cell size and silicification of an euryhaline freshwater diatom: Cyclotella meneghiniana Kütz
    • Roubeix V., Lancelot C. Effect of salinity on growth, cell size and silicification of an euryhaline freshwater diatom: Cyclotella meneghiniana Kütz. Transitional Waters Bulletin 2008, 1:31-38.
    • (2008) Transitional Waters Bulletin , vol.1 , pp. 31-38
    • Roubeix, V.1    Lancelot, C.2
  • 43
    • 84892443805 scopus 로고    scopus 로고
    • Technical report. Available at:, (accessed 01.12.12.), Sarasota Bay Estuary Program
    • Sarasota Bay Estuary Program Nutrient Criteria for Sarasota Bay 2010, 142. Technical report. Available at:, (accessed 01.12.12.). http://www.sarasotabay.org/documents/SBEP-NNC-Final-Report.pdf.
    • (2010) Nutrient Criteria for Sarasota Bay , pp. 142
  • 44
    • 84858682542 scopus 로고    scopus 로고
    • Optimal modularization of learning models in forecasting environmental variables
    • International Environmental Modelling and Software Society Burlington, Vermont, USA, CD ROM, A. Voinov, A. Jakeman, A. Rizzoli (Eds.)
    • Solomatine D.P. Optimal modularization of learning models in forecasting environmental variables. Proceedings of the iEMSs 3rd Biennial Meeting: Summit on Environmental Modelling and Software July 2006, International Environmental Modelling and Software Society Burlington, Vermont, USA, CD ROM. http://www.iemss.org/iemss2006/sessions/all.html, A. Voinov, A. Jakeman, A. Rizzoli (Eds.).
    • (2006) Proceedings of the iEMSs 3rd Biennial Meeting: Summit on Environmental Modelling and Software
    • Solomatine, D.P.1
  • 45
    • 0030619059 scopus 로고    scopus 로고
    • Apragmatic approach to modeling for wildlife management
    • Starfield A.M. Apragmatic approach to modeling for wildlife management. Journal of Wildlife Management 1997, 61:261-270.
    • (1997) Journal of Wildlife Management , vol.61 , pp. 261-270
    • Starfield, A.M.1
  • 50
    • 84869866757 scopus 로고    scopus 로고
    • Aglobal pattern of thermal adaptation in marine phytoplankton
    • (published online 25 October 2012)
    • Thomas M.K., Kremer C.T., Klausmeir C.A., Litchman E. Aglobal pattern of thermal adaptation in marine phytoplankton. Science 2012, (published online 25 October 2012). 10.1126/science.1224836.
    • (2012) Science
    • Thomas, M.K.1    Kremer, C.T.2    Klausmeir, C.A.3    Litchman, E.4
  • 52
    • 84880647093 scopus 로고    scopus 로고
    • Neural-based decision trees classification techniques: a case study in water resources management
    • Springer, Berlin-Heidelberg, Z. Qian, L. Cao, W. Su, T. Wang, H. Yang (Eds.) Recent Advances in Computer Science and Information Engineering
    • Wei C.-C., Hsu H.-H. Neural-based decision trees classification techniques: a case study in water resources management. Lecture Notes in Electrical Engineering 2012, vol. 124:377-382. Springer, Berlin-Heidelberg. Z. Qian, L. Cao, W. Su, T. Wang, H. Yang (Eds.).
    • (2012) Lecture Notes in Electrical Engineering , vol.124 , pp. 377-382
    • Wei, C.-C.1    Hsu, H.-H.2
  • 54
    • 5544244553 scopus 로고    scopus 로고
    • Anew generation of coastal monitoring platforms
    • Zappala G., Azzaro F. Anew generation of coastal monitoring platforms. Chemistry and Ecology 2004, 20:387-398.
    • (2004) Chemistry and Ecology , vol.20 , pp. 387-398
    • Zappala, G.1    Azzaro, F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.