-
1
-
-
85195933296
-
Solution operator approximation for delay differential equation characteristic roots computation via Runge-Kutta methods, Appl
-
D. BREDA, Solution operator approximation for delay differential equation characteristic roots computation via Runge-Kutta methods, Appl. Numer. Math, to appear.
-
Numer. Math, to Appear
-
-
Breda, D.1
-
2
-
-
1642580774
-
Computing the characteristic roots for delay differential equations
-
D. BREDA, S. MASET, AND R. VERMIGLIO, Computing the characteristic roots for delay differential equations, IMA J. Numer. Anal., 24 (2004), pp. 1-19.
-
(2004)
IMA J. Numer. Anal
, vol.24
, pp. 1-19
-
-
Breda, D.1
Maset, S.2
Vermiglio, R.3
-
3
-
-
33644937447
-
Pseudospectral differencing methods for characteristic roots of delay differential equations
-
D. BREDA, S. MASET, AND R. VERMIGLIO, Pseudospectral differencing methods for characteristic roots of delay differential equations, SIAM J. Sci. Comput., 27 (2005), pp. 482-495.
-
(2005)
SIAM J. Sci. Comput
, vol.27
, pp. 482-495
-
-
Breda, D.1
Maset, S.2
Vermiglio, R.3
-
4
-
-
0039483059
-
Numerical bifurcation analysis of delay differential equations using DDE-BIFTOOL, ACM Trans
-
K. ENGELBORGHS, T. LUZYANINA, AND D. ROOSE, Numerical bifurcation analysis of delay differential equations using DDE-BIFTOOL, ACM Trans. Math. Softw., 28 (2002), pp. 1-21.
-
(2002)
Math. Softw
, vol.28
, pp. 1-21
-
-
Engelborghs, K.1
Luzyanina, T.2
Roose, D.3
-
5
-
-
0004033107
-
DDE-BIFTOOL v. 2.00: A Matlab package for numerical bifurcation analysis of delay differential equations, Report TW 330
-
K.U.Leuven, Leuven, Belgium
-
K. ENGELBORGHS, T. LUZYANINA, AND G. SAMAEY, DDE-BIFTOOL v. 2.00: a Matlab package for numerical bifurcation analysis of delay differential equations, Report TW 330, Department of Computer Science, K.U.Leuven, Leuven, Belgium, 2001. Available from http://www.cs.kuleuven.be/~twr/research/software/delay/ddebiftool.shtml
-
(2001)
Department of Computer Science
-
-
Engelborghs, K.1
Luzyanina, T.2
Samaey, G.3
-
6
-
-
0038016911
-
On stability of LMS methods and characteristic roots of delay differential equations, SIAM
-
K. ENGELBORGHS AND D. ROOSE, On stability of LMS methods and characteristic roots of delay differential equations, SIAM J. Numer. Anal., 40 (2002), pp. 629-650.
-
(2002)
J. Numer. Anal
, vol.40
, pp. 629-650
-
-
Engelborghs, K.1
Roose, D.2
-
9
-
-
37649027115
-
Numerical stability analysis of a large-scale delay system modelling a lateral semiconductor laser subject to optical feedback
-
K. VERHEYDEN, K. GREEN, AND D. ROOSE, Numerical stability analysis of a large-scale delay system modelling a lateral semiconductor laser subject to optical feedback, Phys. Rev. E 69, 036702 (2004).
-
(2004)
Phys. Rev. E
, pp. 69
-
-
Verheyden, K.1
Green, K.2
Roose, D.3
-
10
-
-
85195919876
-
Location and numerical preservation of characteristic roots of delay differential equations by LMS methods
-
K.U.Leuven, Leuven, Belgium, Dec., Available from
-
K. VERHEYDEN, T. LUZYANINA, AND D. ROOSE, Location and numerical preservation of characteristic roots of delay differential equations by LMS methods., Technical Report TW-382, Department of Computer Science, K.U.Leuven, Leuven, Belgium, Dec. 2003. Available from http://www.cs.kuleuven.be/publicaties/rapporten/tw/TW382.abs.html
-
(2003)
Technical Report TW-382, Department of Computer Science
-
-
Verheyden, K.1
Luzyanina, T.2
Roose, D.3
-
11
-
-
46749149965
-
-
IFAC Proceedings Volumes
-
K. VERHEYDEN AND D. ROOSE, Efficient numerical stability analysis of delay equations: a spectral method, in the Proceedings of the IFAC Workshop on Time-Delay Systems 2004, D. Roose and W. Michiels, eds., IFAC Proceedings Volumes, 2004, pp. 209-214.
-
(2004)
Efficient Numerical Stability Analysis of Delay Equations: A Spectral Method, in the Proceedings of the IFAC Workshop on Time-Delay Systems 2004
, pp. 209-214
-
-
Verheyden, K.1
Roose, D.2
Roose, D.3
Michiels, W.4
|