메뉴 건너뛰기




Volumn 24, Issue 1, 2014, Pages 91-97

A new dynamic Bayesian network approach for determining effective connectivity from fMRI data

Author keywords

Data mining; Dynamic Bayesian network (DBN); Effective connectivity; Functional magnetic resonance imaging (fMRI); Gaussian dynamic Bayesian network

Indexed keywords

DISCRETE DYNAMIC BAYESIAN NETWORKS; DYNAMIC BAYESIAN NETWORKS; EFFECTIVE CONNECTIVITIES; FUNCTIONAL MAGNETIC RESONANCE IMAGING; GAUSSIAN ASSUMPTION; GAUSSIAN BAYESIAN NETWORKS; TEMPORAL CHARACTERISTICS; TEMPORAL RELATIONSHIPS;

EID: 84891860178     PISSN: 09410643     EISSN: None     Source Type: Journal    
DOI: 10.1007/s00521-013-1465-0     Document Type: Article
Times cited : (22)

References (25)
  • 1
    • 0028190347 scopus 로고
    • Functional and effective connectivity in neuroimaging: a synthesis
    • Friston KJ (1994) Functional and effective connectivity in neuroimaging: a synthesis. Hum Brain Mapp 2(1-2): 56-78.
    • (1994) Hum Brain Mapp , vol.2 , Issue.1-2 , pp. 56-78
    • Friston, K.J.1
  • 2
    • 0028312413 scopus 로고
    • Structural equation modeling and its application to network analysis in functional brain imaging
    • McIntosh AR, Gonzalez-Lima F (1994) Structural equation modeling and its application to network analysis in functional brain imaging. Hum Brain Mapp 2(1-2): 2-22.
    • (1994) Hum Brain Mapp , vol.2 , Issue.1-2 , pp. 2-22
    • McIntosh, A.R.1    Gonzalez-Lima, F.2
  • 4
    • 33746860833 scopus 로고    scopus 로고
    • Learning functional structure from fMR images
    • Zheng X, Rajapakse JC (2006) Learning functional structure from fMR images. NeuroImage 31(4): 1601-1613.
    • (2006) NeuroImage , vol.31 , Issue.4 , pp. 1601-1613
    • Zheng, X.1    Rajapakse, J.C.2
  • 5
    • 34548014282 scopus 로고    scopus 로고
    • Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging
    • Fox MD, Raichle ME (2007) Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 8(9): 700-711.
    • (2007) Nat Rev Neurosci , vol.8 , Issue.9 , pp. 700-711
    • Fox, M.D.1    Raichle, M.E.2
  • 6
    • 0000120766 scopus 로고
    • Estimate the dimension of a model
    • Schwarz G (1978) Estimate the dimension of a model. Ann Stat 6: 461-464.
    • (1978) Ann Stat , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 8
    • 0000987741 scopus 로고
    • Gaussian influence diagrams
    • Shachter RD, Kenley CR (1989) Gaussian influence diagrams. Manage Sci 35(5): 527-550.
    • (1989) Manage Sci , vol.35 , Issue.5 , pp. 527-550
    • Shachter, R.D.1    Kenley, C.R.2
  • 9
    • 84887414262 scopus 로고    scopus 로고
    • An early warning system approach for the identification of currency crises with data mining techniques
    • doi:10.1007/s00521-012-1206-9
    • Karahoca D, Karahoca A, Yavuz Ö (2012) An early warning system approach for the identification of currency crises with data mining techniques. Neural Comput Appl. doi: 10. 1007/s00521-012-1206-9.
    • (2012) Neural Comput Appl
    • Karahoca, D.1    Karahoca, A.2    Yavuz, Ö.3
  • 10
    • 84865657332 scopus 로고    scopus 로고
    • A framework for improving e-commerce websites usability using a hybrid genetic algorithm and neural network system
    • doi:10.1007/s00521-011-0674-7
    • Sohrabi B, Mahmoudian P, Raeesi I (2011) A framework for improving e-commerce websites usability using a hybrid genetic algorithm and neural network system. Neural Comput Appl 21: 1017-1029. doi: 10. 1007/s00521-011-0674-7.
    • (2011) Neural Comput Appl , vol.21 , pp. 1017-1029
    • Sohrabi, B.1    Mahmoudian, P.2    Raeesi, I.3
  • 11
    • 84888824061 scopus 로고    scopus 로고
    • Developing a new model based on neuro-fuzzy system for predicting roof fall in coal mines
    • doi:10.1007/s00521-012-1271-0
    • Farid M, HosseinAbadi MM, Yazdani-Chamzini A et al (2012) Developing a new model based on neuro-fuzzy system for predicting roof fall in coal mines. Neural Comput Appl. doi: 10. 1007/s00521-012-1271-0.
    • (2012) Neural Comput Appl
    • Farid, M.1    HosseinAbadi, M.M.2    Yazdani-Chamzini, A.3
  • 12
    • 67249145323 scopus 로고    scopus 로고
    • Effective connectivity analysis of default mode network based on the Bayesian network learning approach
    • Li R, Chen K, Zhang N (2009) Effective connectivity analysis of default mode network based on the Bayesian network learning approach. Proc SPIE 7262.
    • (2009) Proc SPIE , vol.7262
    • Li, R.1    Chen, K.2    Zhang, N.3
  • 13
    • 34547839743 scopus 로고    scopus 로고
    • Learning effective brain connectivity with dynamic Bayesian networks
    • Rajapakse JC, Zhou J (2007) Learning effective brain connectivity with dynamic Bayesian networks. NeuroImage 37(3): 749-760.
    • (2007) NeuroImage , vol.37 , Issue.3 , pp. 749-760
    • Rajapakse, J.C.1    Zhou, J.2
  • 14
    • 58149350434 scopus 로고    scopus 로고
    • Discrete dynamic Bayesian network analysis of fMRI data
    • Burge J, Lane T, Link H (2009) Discrete dynamic Bayesian network analysis of fMRI data. Hum Brain Mapp 30(1): 122-137.
    • (2009) Hum Brain Mapp , vol.30 , Issue.1 , pp. 122-137
    • Burge, J.1    Lane, T.2    Link, H.3
  • 15
    • 80054879214 scopus 로고    scopus 로고
    • Knowledge based activity recognition with dynamic bayesian network
    • Zeng Z and Ji Q (2010) Knowledge based activity recognition with dynamic bayesian network. Computer Vision-ECCV.
    • (2010) Computer Vision-ECCV
    • Zeng, Z.1    Ji, Q.2
  • 16
    • 33645775748 scopus 로고    scopus 로고
    • A Bayesian approach to modeling dynamic effective connectivity with fMRI data
    • Bhattacharya S, Ringo Ho MH, Purkayastha S (2006) A Bayesian approach to modeling dynamic effective connectivity with fMRI data. NeuroImage 30(3): 794-812.
    • (2006) NeuroImage , vol.30 , Issue.3 , pp. 794-812
    • Bhattacharya, S.1    Ringo Ho, M.H.2    Purkayastha, S.3
  • 17
    • 0000987741 scopus 로고
    • Ganssin influence diagrams
    • Shachter RD, Kenley CR (1989) Ganssin influence diagrams. Manage Sci 35: 527-550.
    • (1989) Manage Sci , vol.35 , pp. 527-550
    • Shachter, R.D.1    Kenley, C.R.2
  • 21
    • 1842427969 scopus 로고    scopus 로고
    • Default-mode network activity distinguishes Alzheimer's disease from healthy aging: evidence from functional MRI
    • Greicius MD (2004) Default-mode network activity distinguishes Alzheimer's disease from healthy aging: evidence from functional MRI. Proc Natl Acad Sci 101(13): 4637-4642.
    • (2004) Proc Natl Acad Sci , vol.101 , Issue.13 , pp. 4637-4642
    • Greicius, M.D.1
  • 22
    • 78649683713 scopus 로고    scopus 로고
    • Granger causal influence predicts BOLD activity levels in the default mode network
    • Jiao Q, Lu G, Zhang Z et al (2011) Granger causal influence predicts BOLD activity levels in the default mode network. Hum Brain Mapp 32(1): 154-161.
    • (2011) Hum Brain Mapp , vol.32 , Issue.1 , pp. 154-161
    • Jiao, Q.1    Lu, G.2    Zhang, Z.3
  • 23
    • 49349092320 scopus 로고    scopus 로고
    • PET imaging of amyloid deposition in patients with mild cognitive impairment
    • Forsberg A, Engler H, Almkvist O et al (2008) PET imaging of amyloid deposition in patients with mild cognitive impairment. Neurobiol Aging 29: 1456-1465.
    • (2008) Neurobiol Aging , vol.29 , pp. 1456-1465
    • Forsberg, A.1    Engler, H.2    Almkvist, O.3
  • 24
    • 0141705249 scopus 로고    scopus 로고
    • Macaque monkey retrosplenial cortex: II. Cortical afferents
    • Kobayashi Y, Amaral DG (2003) Macaque monkey retrosplenial cortex: II. Cortical afferents. J Comp Neurol 466: 48-79.
    • (2003) J Comp Neurol , vol.466 , pp. 48-79
    • Kobayashi, Y.1    Amaral, D.G.2
  • 25
    • 34248360779 scopus 로고    scopus 로고
    • Macaque monkey retrosplenial cortex: III. Cortical efferents
    • Kobayashi Y, Amaral DG (2007) Macaque monkey retrosplenial cortex: III. Cortical efferents. J Comp Neurol 502: 810-833.
    • (2007) J Comp Neurol , vol.502 , pp. 810-833
    • Kobayashi, Y.1    Amaral, D.G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.