메뉴 건너뛰기




Volumn 38, Issue 4, 2013, Pages 729-739

Approximations for monotone and nonmonotone submodular maximization with knapsack constraints

Author keywords

Approximation algorithms; Generalized assignment problem; Knapsack constraints; Maximum coverage; Randomization; Submodular maximization

Indexed keywords

GENERALIZED ASSIGNMENT PROBLEM; KNAPSACK CONSTRAINTS; MAXIMUM COVERAGE; RANDOMIZATION; SUBMODULAR;

EID: 84891855975     PISSN: 0364765X     EISSN: 15265471     Source Type: Journal    
DOI: 10.1287/moor.2013.0592     Document Type: Article
Times cited : (94)

References (27)
  • 1
    • 4344588928 scopus 로고    scopus 로고
    • Pipage rounding: A new method of constructing algorithms with proven performance guarantee
    • Ageev AA, Sviridenko M (2004) Pipage rounding: A new method of constructing algorithms with proven performance guarantee. J. Combin. Optim. 8(3):307-328.
    • (2004) J. Combin. Optim. , vol.8 , Issue.3 , pp. 307-328
    • Ageev, A.A.1    Sviridenko, M.2
  • 4
    • 84855599508 scopus 로고    scopus 로고
    • Maximizing a monotone submodular function subject to a matroid constraint
    • Calinescu G, Chekuri C, Pál M, Vondrák J (2011) Maximizing a monotone submodular function subject to a matroid constraint. SIAM J. Comput. 40(6):1740-1766.
    • (2011) SIAM J. Comput. , vol.40 , Issue.6 , pp. 1740-1766
    • Calinescu, G.1    Chekuri, C.2    Pál, M.3    Vondrák, J.4
  • 5
    • 35048858805 scopus 로고    scopus 로고
    • Maximum coverage problem with group budget constraints and applications
    • Springer, Berlin, Heidelberg
    • Chekuri C, Kumar A (2004) Maximum coverage problem with group budget constraints and applications. Proc. APPROX-RANDOM (Springer, Berlin, Heidelberg), 72-83.
    • (2004) Proc. APPROX-RANDOM , pp. 72-83
    • Chekuri, C.1    Kumar, A.2
  • 8
    • 84891844576 scopus 로고    scopus 로고
    • Maximizing submodular set functions subject to different constraints: Combined algorithms
    • abs/1101.2973
    • Fadaei S, Mohammad Ali S, Mohammad Amin F (2011) Maximizing submodular set functions subject to different constraints: Combined algorithms. CoRR abs/1101.2973.
    • (2011) CoRR
    • Fadaei, S.1    Mohammad, A.S.2    Mohammad, A.F.3
  • 9
    • 0032108328 scopus 로고    scopus 로고
    • A Threshold of ln n for Approximating Set Cover
    • Feige U (1998) A threshold of ln n for approximating set cover. J. ACM 45(4):634-652. (Pubitemid 128488790)
    • (1998) Journal of the ACM , vol.45 , Issue.4 , pp. 634-652
    • Feige, U.1
  • 12
    • 0034157028 scopus 로고    scopus 로고
    • Approximation algorithms for submodular set cover with applications
    • Fujito T (2000) Approximation algorithms for submodular set cover with applications. IEICE Trans. Inf. Systems E83-D(3), 480-487.
    • (2000) IEICE Trans. Inf. Systems , vol.E83-D , Issue.3 , pp. 480-487
    • Fujito, T.1
  • 16
    • 0032614948 scopus 로고    scopus 로고
    • The budgeted maximum coverage problem
    • Khuller S, Moss A, Naor J (1999) The budgeted maximum coverage problem. Inf. Process. Lett. 70(1):39-45.
    • (1999) Inf. Process. Lett. , vol.70 , Issue.1 , pp. 39-45
    • Khuller, S.1    Moss, A.2    Naor, J.3
  • 18
    • 77953651617 scopus 로고    scopus 로고
    • There is no EPTAS for two-dimensional knapsack
    • Kulik A, Shachnai H (2010) There is no EPTAS for two-dimensional knapsack. Inf. Process. Lett. 110(16):707-710.
    • (2010) Inf. Process. Lett. , vol.110 , Issue.16 , pp. 707-710
    • Kulik, A.1    Shachnai, H.2
  • 21
    • 0021423921 scopus 로고
    • A note on approximation schemes for multidimensional knapsack problems
    • Magazine MJ, Chern M-S (1984) A note on approximation schemes for multidimensional knapsack problems. Math. Oper. Res. 9(2):244-247.
    • (1984) Math. Oper. Res. , vol.9 , Issue.2 , pp. 244-247
    • Magazine, M.J.1    Chern, M.-S.2
  • 22
    • 0010814278 scopus 로고
    • Best algorithms for approximating the maximum of a submodular set function
    • Nemhauser G, Wolsey L (1978) Best algorithms for approximating the maximum of a submodular set function. Math. Oper. Res. 3(3):177-188.
    • (1978) Math. Oper. Res. , vol.3 , Issue.3 , pp. 177-188
    • Nemhauser, G.1    Wolsey, L.2
  • 23
    • 0000095809 scopus 로고
    • An analysis of the approximations for maximizing submodular set functions
    • Nemhauser G, Wolsey L, Fisher M (1978) An analysis of the approximations for maximizing submodular set functions. Math. Programming 14:265-294.
    • (1978) Math. Programming , vol.14 , pp. 265-294
    • Nemhauser, G.1    Wolsey, L.2    Fisher, M.3
  • 25
    • 0142029543 scopus 로고    scopus 로고
    • A note on maximizing a submodular set function subject to knapsack constraint
    • Sviridenko M (2004) A note on maximizing a submodular set function subject to knapsack constraint. Oper. Res. Lett. 32:41-43.
    • (2004) Oper. Res. Lett. , vol.32 , pp. 41-43
    • Sviridenko, M.1
  • 26
    • 57049187237 scopus 로고    scopus 로고
    • Optimal approximation for the submodular welfare problem in the value oracle model
    • ACM, New York
    • Vondrák J (2008) Optimal approximation for the submodular welfare problem in the value oracle model. Proc. 40th Annual ACM Sympos. Theory Comput. (ACM, New York), 67-74.
    • (2008) Proc. 40th Annual ACM Sympos. Theory Comput. , pp. 67-74
    • Vondrák, J.1
  • 27
    • 79959724727 scopus 로고    scopus 로고
    • Submodular function maximization via the multilinear relaxation and contention resolution schemes
    • ACM, New York
    • Vondrák J, Chekuri C, Zenklusen R (2011) Submodular function maximization via the multilinear relaxation and contention resolution schemes. Proc. 43rd Annual ACM Sympos. Theory Comput. (ACM, New York), 783-792.
    • (2011) Proc. 43rd Annual ACM Sympos. Theory Comput. , pp. 783-792
    • Vondrák, J.1    Chekuri, C.2    Zenklusen, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.