메뉴 건너뛰기




Volumn 7, Issue 1, 2014, Pages 317-326

A kernel-based feature selection method for SVM with RBF kernel for hyperspectral image classification

Author keywords

Feature selection; hyperspectral image classification; kernel based feature selection; radial basis function; support vector machines

Indexed keywords

CLASSIFICATION PERFORMANCE; FEATURE SELECTION METHODS; HYPER-SPECTRAL IMAGES; HYPERSPECTRAL IMAGE CLASSIFICATION; HYPERSPECTRAL IMAGING; LINEAR COMBINATIONS; RADIAL BASIS FUNCTION(RBF); RADIAL BASIS FUNCTIONS;

EID: 84891831761     PISSN: 19391404     EISSN: 21511535     Source Type: Journal    
DOI: 10.1109/JSTARS.2013.2262926     Document Type: Article
Times cited : (358)

References (62)
  • 1
    • 67650234021 scopus 로고    scopus 로고
    • Three decades of hyperspectral remote sensing of the earth: A personal view
    • Sep.
    • A. F. H. Goetz, Three decades of hyperspectral remote sensing of the earth: A personal view, Remote Sensing of Environment, vol. 113, pp. S5-S16, Sep. 2009.
    • (2009) Remote Sensing of Environment , vol.113 , pp. 5-16
    • Goetz, A.F.H.1
  • 4
    • 79955524409 scopus 로고    scopus 로고
    • BandClust: An unsupervised band reduction method for hyperspectral remote sensing
    • May
    • C. Cariou, K. Chehdi, and S. L. Moan, BandClust: An unsupervised band reduction method for hyperspectral remote sensing, IEEE Geosci. Remote Sens. Lett., vol. 8, no. 3, pp. 565-569, May 2011.
    • (2011) IEEE Geosci. Remote Sens. Lett. , vol.8 , Issue.3 , pp. 565-569
    • Cariou, C.1    Chehdi, K.2    Moan, S.L.3
  • 5
    • 0028403418 scopus 로고
    • Efficient maximum likelihood classification for imaging spectrometer data sets
    • Mar
    • X. Jia and J. A. Richards, Efficient maximum likelihood classification for imaging spectrometer data sets, IEEE Trans. Geosci. Remote Sens. E, vol. 32, pp. 274-281, Mar. 1994.
    • (1994) IEEe Trans. Geosci. Remote Sens. e , vol.32 , pp. 274-281
    • Jia, X.1    Richards, J.A.2
  • 6
    • 67651166635 scopus 로고    scopus 로고
    • A novel context-sensitive semisupervised SVM classifier robust to mislabeled training samples
    • Jul
    • L. Bruzzone and C. Persello, A novel context-sensitive semisupervised SVM classifier robust to mislabeled training samples, IEEE Trans. Geosci. Remote Sens. E, vol. 47, no. 7, pp. 2142-2154, Jul. 2009.
    • (2009) IEEe Trans. Geosci. Remote Sens. e , vol.47 , Issue.7 , pp. 2142-2154
    • Bruzzone, L.1    Persello, C.2
  • 8
    • 77957741951 scopus 로고
    • On the mean accuracy of statistical pattern recognizers
    • Jan
    • G. F. Hughes, On the mean accuracy of statistical pattern recognizers, IEEE Trans. Inf. Theory, vol. IT-14, no. 1, pp. 55-63, Jan. 1968.
    • (1968) IEEE Trans. Inf. Theory , vol.IT-14 , Issue.1 , pp. 55-63
    • Hughes, G.F.1
  • 9
    • 33847762803 scopus 로고    scopus 로고
    • Feature extractions for small sample size classification problem
    • Mar
    • B.-C. Kuo and K.-Y. Chang, Feature extractions for small sample size classification problem, IEEE Trans. Geosci. Remote Sens. E, vol. 45, no. 3, pp. 756-764, Mar. 2007.
    • (2007) IEEe Trans. Geosci. Remote Sens. e , vol.45 , Issue.3 , pp. 756-764
    • Kuo, B.-C.1    Chang, K.-Y.2
  • 10
    • 63149143190 scopus 로고    scopus 로고
    • Kernel nonparametric weighted feature extraction for hyperspectral image classification
    • Apr
    • B.-C. Kuo, C.-H. Li, and J.-M. Yang, Kernel nonparametric weighted feature extraction for hyperspectral image classification, IEEE Trans. Geosci. Remote Sens. E, vol. 47, no. 4, pp. 1139-1155, Apr. 2009.
    • (2009) IEEe Trans. Geosci. Remote Sens. e , vol.47 , Issue.4 , pp. 1139-1155
    • Kuo, B.-C.1    Li, C.-H.2    Yang, J.-M.3
  • 11
    • 14644403023 scopus 로고    scopus 로고
    • Multispectral land sensing:Where from,where to
    • Mar
    • D. A. Landgrebe, Multispectral land sensing:Where from,where to, IEEE Trans. Geosci. Remote Sens. E, vol. 43, pp. 414-421, Mar. 2005.
    • (2005) IEEe Trans. Geosci. Remote Sens. e , vol.43 , pp. 414-421
    • Landgrebe, D.A.1
  • 15
    • 4344614511 scopus 로고    scopus 로고
    • Classification of hyperspectral remote sensing images with support vector machines
    • Aug
    • F. Melgani and L. Bruzzone, Classification of hyperspectral remote sensing images with support vector machines, IEEE Trans. Geosci. Remote Sens. E, vol. 42, no. 8, pp. 1778-1790, Aug. 2004.
    • (2004) IEEe Trans. Geosci. Remote Sens. e , vol.42 , Issue.8 , pp. 1778-1790
    • Melgani, F.1    Bruzzone, L.2
  • 17
    • 20444432773 scopus 로고    scopus 로고
    • Kernel-based methods for hyperspectral image classification
    • Jun
    • G. Camps-Valls and L. Bruzzone, Kernel-based methods for hyperspectral image classification, IEEE Trans. Geosci. Remote Sens. E, vol. 43, no. 6, pp. 1351-1362, Jun. 2005.
    • (2005) IEEe Trans. Geosci. Remote Sens. e , vol.43 , Issue.6 , pp. 1351-1362
    • Camps-Valls, G.1    Bruzzone, L.2
  • 20
    • 52249100995 scopus 로고    scopus 로고
    • SATzilla: Portfolio- based algorithm selection for SAT
    • L. Xu, F. Hutter, H. H. Hoos, and K. Leyton-Brown, SATzilla: Portfolio- based algorithm selection for SAT, J. Artif. Intell. Res., vol. 32, pp. 565-606, 2008.
    • (2008) J. Artif. Intell. Res. , vol.32 , pp. 565-606
    • Xu, L.1    Hutter, F.2    Hoos, H.H.3    Leyton-Brown, K.4
  • 21
    • 84862959226 scopus 로고    scopus 로고
    • An automatic method for selecting the parameter of the normalized kernel function to support vector machines
    • Jan.
    • C.-H. Li, H.-H. Ho, Y.-L. Liu, C.-T. Lin, B.-C. Kuo, and J.-S. Taur, An automatic method for selecting the parameter of the normalized kernel function to support vector machines, J. Inf. Sci. Eng., vol. 28, no. 1, pp. 1-15, Jan. 2012.
    • (2012) J. Inf. Sci. Eng. , vol.28 , Issue.1 , pp. 1-15
    • Li, C.-H.1    Ho, H.-H.2    Liu, Y.-L.3    Lin, C.-T.4    Kuo, B.-C.5    Taur, J.-S.6
  • 22
    • 78650912012 scopus 로고    scopus 로고
    • An automatic method for selecting the parameter of the RBF kernel function to support vector machines
    • C.-H. Li, C.-T. Lin, B.-C. Kuo, and H.-S. Chu, An automatic method for selecting the parameter of the RBF kernel function to support vector machines, in Proc. IEEE Int. Geosci. Remote Sens. Symp. (IGARSS), 2010, pp. 836-839.
    • (2010) Proc. IEEE Int. Geosci. Remote Sens. Symp. (IGARSS) , pp. 836-839
    • Li, C.-H.1    Lin, C.-T.2    Kuo, B.-C.3    Chu, H.-S.4
  • 23
    • 84891828518 scopus 로고    scopus 로고
    • Applying optimal kernel algorithm to multiple classifier system for improving dynamic subspace method based on support vector machines
    • presented at the Taichung, Taiwan, Nov.
    • I.-L. Chen, W.-M. Chang, B.-C. Kuo, and C.-H. Li, Applying optimal kernel algorithm to multiple classifier system for improving dynamic subspace method based on support vector machines, presented at the 2011 Aeronaut. Astronaut. Soc. Rep. of China (AASRC) Conf., Taichung, Taiwan, Nov. 2011.
    • (2011) 2011 Aeronaut. Astronaut. Soc. Rep. of China (AASRC) Conf.
    • Chen, I.-L.1    Chang, W.-M.2    Kuo, B.-C.3    Li, C.-H.4
  • 24
    • 80955170645 scopus 로고    scopus 로고
    • Combining ensemble technique of support vector machines with the optimal kernel method for hyperspectral image classification
    • B.-C. Kuo, I.-L. Chen, C.-H. Li, and C.-C. Hung, Combining ensemble technique of support vector machines with the optimal kernel method for hyperspectral image classification, in Proc. IEEE Int. Geosci. Remote Sens. Symp. (IGARSS), 2011, pp. 3903-3906.
    • (2011) Proc. IEEE Int. Geosci. Remote Sens. Symp. (IGARSS) , pp. 3903-3906
    • Kuo, B.-C.1    Chen, I.-L.2    Li, C.-H.3    Hung, C.-C.4
  • 25
    • 67949115614 scopus 로고    scopus 로고
    • Spectral-;spatial classification of hyperspectral imagery based on partitional clustering techniques
    • Aug
    • Y. Tarabalka, J. A. Benediktsson, and J. Chanussot, Spectral-;spatial classification of hyperspectral imagery based on partitional clustering techniques, IEEE Trans. Geosci. Remote Sens. E, vol. 47, no. 8, pp. 2973-2987, Aug. 2009.
    • (2009) IEEe Trans. Geosci. Remote Sens. e , vol.47 , Issue.8 , pp. 2973-2987
    • Tarabalka, Y.1    Benediktsson, J.A.2    Chanussot, J.3
  • 26
    • 80052099081 scopus 로고    scopus 로고
    • A spatial-contextual support vector machine for remotely sensed image classification
    • Mar
    • C.-H. Li, B.-C. Kuo, C.-T. Lin, and C.-S. Huang, A spatial-contextual support vector machine for remotely sensed image classification, IEEE Trans. Geosci. Remote Sens. E, vol. 50, no. 3, pp. 784-799, Mar. 2012.
    • (2012) IEEe Trans. Geosci. Remote Sens. e , vol.50 , Issue.3 , pp. 784-799
    • Li, C.-H.1    Kuo, B.-C.2    Lin, C.-T.3    Huang, C.-S.4
  • 27
    • 0036505670 scopus 로고    scopus 로고
    • A comparison of methods for multiclass support vector machines
    • C.-W. Hsu and C.-J. Lin, A comparison of methods for multiclass support vector machines, IEEE Trans. Neural Netw., vol. 13, no. 2, pp. 415-425, 2002.
    • (2002) IEEE Trans. Neural Netw. , vol.13 , Issue.2 , pp. 415-425
    • Hsu, C.-W.1    Lin, C.-J.2
  • 28
    • 79955702502 scopus 로고    scopus 로고
    • LIBSVM: A library for support vector machines
    • C.-C. Chang and C.-J. Lin, LIBSVM: A library for support vector machines, ACM Trans. Intell. Syst. Technol., vol. 2, no. 27, pp. 1-27, 2011.
    • (2011) ACM Trans. Intell. Syst. Technol. , vol.2 , Issue.27 , pp. 1-27
    • Chang, C.-C.1    Lin, C.-J.2
  • 29
    • 33645294357 scopus 로고    scopus 로고
    • An interior algorithmfor nonlinear optimization that combines line search and trust region steps
    • R. A. Waltz, J. L. Morales, J. Nocedal, and D. Orban, An interior algorithmfor nonlinear optimization that combines line search and trust region steps, Math. Programm., vol. 107, no. 3, pp. 391-408, 2006.
    • (2006) Math. Programm. , vol.107 , Issue.3 , pp. 391-408
    • Waltz, R.A.1    Morales, J.L.2    Nocedal, J.3    Orban, D.4
  • 31
    • 43949154166 scopus 로고
    • On the convergence of reflective Newton methods for large-scale nonlinear minimization subject to bounds
    • T. F. Coleman and Y. Li, On the convergence of reflective Newton methods for large-scale nonlinear minimization subject to bounds, Math. Programm., vol. 67, no. 2, pp. 189-224, 1994.
    • (1994) Math. Programm. , vol.67 , Issue.2 , pp. 189-224
    • Coleman, T.F.1    Li, Y.2
  • 32
    • 71749094313 scopus 로고    scopus 로고
    • Multi-class F-score selection approach to classification of obstructive sleep apnea syndrome
    • S. Gunes, K. Polat, and S. Yosunkaya, Multi-class F-score selection approach to classification of obstructive sleep apnea syndrome, Expert Syst. Appl., vol. 37, pp. 998-1004, 2010.
    • (2010) Expert Syst. Appl. , vol.37 , pp. 998-1004
    • Gunes, S.1    Polat, K.2    Yosunkaya, S.3
  • 35
    • 33947159574 scopus 로고    scopus 로고
    • Evaluation of stability of -means cluster ensembles with respect to random initialization
    • L. I. Kuncheva and D. P. Vetrov, Evaluation of stability of -means cluster ensembles with respect to random initialization, IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 11, pp. 1798-1808, 2006.
    • (2006) IEEE Trans. Pattern Anal. Mach. Intell. , vol.28 , Issue.11 , pp. 1798-1808
    • Kuncheva, L.I.1    Vetrov, D.P.2
  • 37
    • 77954623833 scopus 로고    scopus 로고
    • Remote sensing feature selection by kernel dependence measures
    • Jul
    • G. Camps-Valls, J. Mooij, and B. Scholkopf, Remote sensing feature selection by kernel dependence measures, IEEE Geosci. Remote Sens. Lett., vol. 7, no. 3, pp. 587-591, Jul. 2010.
    • (2010) IEEE Geosci. Remote Sens. Lett. , vol.7 , Issue.3 , pp. 587-591
    • Camps-Valls, G.1    Mooij, J.2    Scholkopf, B.3
  • 38
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • I. Guyon and A. Elisseeff, An introduction to variable and feature selection, J. Mach. Learn. Res., vol. 3, pp. 1157-1182, 2003.
    • (2003) J. Mach. Learn. Res. , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 40
    • 0242712181 scopus 로고    scopus 로고
    • Exploiting spectral and spatial information for classifying hyperspectral data in urban areas
    • Toulouse, France
    • F. Dell'Acqua, P. Gamba, and A. Ferrari, Exploiting spectral and spatial information for classifying hyperspectral data in urban areas, in Proc. IEEE Int. Geosci. Remote Sens. Symp. (IGARSS), Toulouse, France, 2003, vol. 1, pp. 464-466.
    • (2003) Proc. IEEE Int. Geosci. Remote Sens. Symp. (IGARSS) , vol.1 , pp. 464-466
    • Dell'Acqua, F.1    Gamba, P.2    Ferrari, A.3
  • 41
    • 14644412366 scopus 로고    scopus 로고
    • Classification of hyperspectral data from urban areas based on extended morphological profiles
    • J. A. Benediktsson, A. J. Palmason, and J. R. Sveinsson, Classification of hyperspectral data from urban areas based on extended morphological profiles, IEEE Trans. Geosci. Remote Sens. E, vol. 55, pp. 229-243, 2005.
    • (2005) IEEe Trans. Geosci. Remote Sens. e , vol.55 , pp. 229-243
    • Benediktsson, J.A.1    Palmason, A.J.2    Sveinsson, J.R.3
  • 44
    • 64549105242 scopus 로고    scopus 로고
    • A neural network approach using multi-scale textural metrics from very high resolution panchromatic imagery for urban land-use classification
    • Jun
    • F. Pacifici,M. Chini, and W. Emery, A neural network approach using multi-scale textural metrics from very high resolution panchromatic imagery for urban land-use classification, Remote Sens. Environ., vol. 113, no. 6, pp. 1276-1292, Jun. 2009.
    • (2009) Remote Sens. Environ. , vol.113 , Issue.6 , pp. 1276-1292
    • Pacifici, F.1    Chini, M.2    Emery, W.3
  • 45
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • Jan
    • I. Guyon, J. Weston, S. Barnhill, and V. Vapnik, Gene selection for cancer classification using support vector machines, Mach. Learn., vol. 46, no. 1-3, pp. 389-422, Jan. 2002.
    • (2002) Mach. Learn. , vol.46 , Issue.1-3 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 46
    • 70350655559 scopus 로고    scopus 로고
    • Classification of very high spatial resolution imagery using mathematical morphology and support vector machines
    • Nov
    • D. Tuia, F. Pacifici, M. Kanevski, and W. Emery, Classification of very high spatial resolution imagery using mathematical morphology and support vector machines, IEEE Trans. Geosci. Remote Sens. E, vol. 47, no. 11, pp. 3866-3879, Nov. 2009.
    • (2009) IEEe Trans. Geosci. Remote Sens. e , vol.47 , Issue.11 , pp. 3866-3879
    • Tuia, D.1    Pacifici, F.2    Kanevski, M.3    Emery, W.4
  • 47
    • 2642530204 scopus 로고    scopus 로고
    • Nonparametric weighted feature extraction for classification
    • May
    • B.-C. Kuo and D. A. Landgrebe, Nonparametric weighted feature extraction for classification, IEEE Trans. Geosci. Remote Sens. E, vol. 42, no. 5, pp. 1096-1105, May 2004.
    • (2004) IEEe Trans. Geosci. Remote Sens. e , vol.42 , Issue.5 , pp. 1096-1105
    • Kuo, B.-C.1    Landgrebe, D.A.2
  • 48
    • 79952022416 scopus 로고    scopus 로고
    • Semisupervised dimensionality reduction with pairwise constraints for hyperspectral image classification
    • S. Chen and D. Zhang, Semisupervised dimensionality reduction with pairwise constraints for hyperspectral image classification, IEEE Geosci. Remote Sens. Lett., vol. 8, no. 2, pp. 369-373, 2011.
    • (2011) IEEE Geosci. Remote Sens. Lett. , vol.8 , Issue.2 , pp. 369-373
    • Chen, S.1    Zhang, D.2
  • 49
    • 56849127860 scopus 로고    scopus 로고
    • Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles
    • Nov
    • M. Fauvel, J. A. Benediktsson, J. Chanussot, and J. R. Sveinsson, Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles, IEEE Trans. Geosci. Remote Sens. E, vol. 46, no. 11, pp. 3804-3814, Nov. 2008.
    • (2008) IEEe Trans. Geosci. Remote Sens. e , vol.46 , Issue.11 , pp. 3804-3814
    • Fauvel, M.1    Benediktsson, J.A.2    Chanussot, J.3    Sveinsson, J.R.4
  • 50
    • 14644435059 scopus 로고    scopus 로고
    • Dimensionality reduction and classification of hyperspectral image data using sequences of extended morphological transformations
    • Mar
    • A. Plaza, P.Martinez, J. Plaza, and R. Perez, Dimensionality reduction and classification of hyperspectral image data using sequences of extended morphological transformations, IEEE Trans. Geosci. Remote Sens. E, vol. 43, no. 3, pp. 466-479, Mar. 2005.
    • (2005) IEEe Trans. Geosci. Remote Sens. e , vol.43 , Issue.3 , pp. 466-479
    • Plaza, A.1    Martinez, P.2    Plaza, J.3    Perez, R.4
  • 51
    • 77953872402 scopus 로고    scopus 로고
    • A dynamic subspace method for hyperspectral image classification
    • Jul
    • J.-M. Yang, B.-C. Kuo, P.-T. Yu, and C.-H. Chuang, A dynamic subspace method for hyperspectral image classification, IEEE Trans. Geosci. Remote Sens. E, vol. 48, no. 7, pp. 2840-2853, Jul. 2010.
    • (2010) IEEe Trans. Geosci. Remote Sens. e , vol.48 , Issue.7 , pp. 2840-2853
    • Yang, J.-M.1    Kuo, B.-C.2    Yu, P.-T.3    Chuang, C.-H.4
  • 52
    • 77953871614 scopus 로고    scopus 로고
    • Sensitivity of support vector machines to random feature selection in classification of hyperspectral data
    • Jul
    • B. Waske, S. van der Linden, J. A. Benediktsson, A. Rabe, and P. Hostert, Sensitivity of support vector machines to random feature selection in classification of hyperspectral data, IEEE Trans. Geosci. Remote Sens. E, vol. 48, no. 7, pp. 2880-2889, Jul. 2010.
    • (2010) IEEe Trans. Geosci. Remote Sens. e , vol.48 , Issue.7 , pp. 2880-2889
    • Waske, B.1    Linden Der S.Van2    Benediktsson, J.A.3    Rabe, A.4    Hostert, P.5
  • 53
    • 33747119337 scopus 로고    scopus 로고
    • Support vector machine-based feature selection for land cover classification: A case study with DAIS hyperspectral data
    • Jul
    • M. Pal, Support vector machine-based feature selection for land cover classification: A case study with DAIS hyperspectral data, Int. J. Remote Sens., vol. 27, no. 14, pp. 2877-2894, Jul. 2006.
    • (2006) Int. J. Remote Sens. , vol.27 , Issue.14 , pp. 2877-2894
    • Pal, M.1
  • 54
    • 35348920168 scopus 로고    scopus 로고
    • Feature selection and classification of hyperspectral images with support vector machines
    • Oct
    • R. Archibald and G. Fann, Feature selection and classification of hyperspectral images with support vector machines, IEEE Geosci. Remote Sens. Lett., vol. 4, no. 4, pp. 674-679, Oct. 2007.
    • (2007) IEEE Geosci. Remote Sens. Lett. , vol.4 , Issue.4 , pp. 674-679
    • Archibald, R.1    Fann, G.2
  • 55
    • 67651177445 scopus 로고    scopus 로고
    • Using stacked generalization to combine svms in magnitude and shape feature spaces for classification of hyperspectral data
    • Jul
    • J. Chen, C.Wang, and R.Wang, Using stacked generalization to combine svms in magnitude and shape feature spaces for classification of hyperspectral data, IEEE Trans. Geosci. Remote Sens. E, vol. 47, no. 7, pp. 2193-2205, Jul. 2009.
    • (2009) IEEe Trans. Geosci. Remote Sens. e , vol.47 , Issue.7 , pp. 2193-2205
    • Chen, J.1    Wang, C.2    Wang, R.3
  • 57
    • 84891829957 scopus 로고    scopus 로고
    • [Online]. Available:
    • [Online]. Available: http://www.mathworks.com/
  • 58
    • 84874545698 scopus 로고    scopus 로고
    • Feature mining for hyperspectral image classification
    • May
    • X. P. Jia, B.-C. Kuo, and M. M. Crawford, Feature mining for hyperspectral image classification, Proc. IEEE, vol. 101, no. 3, pp. 676-697, May 2013.
    • (2013) Proc. IEEE , vol.101 , Issue.3 , pp. 676-697
    • Jia, X.P.1    Kuo, B.-C.2    Crawford, M.M.3
  • 59
    • 0036522403 scopus 로고    scopus 로고
    • Unsupervised feature selection using feature similarity
    • P. Mitra, C. A. Murthy, and S. K. Pal, Unsupervised feature selection using feature similarity, IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 4, pp. 301-312, 2002.
    • (2002) IEEE Trans. Pattern Anal. Mach. Intell. , vol.24 , Issue.4 , pp. 301-312
    • Mitra, P.1    Murthy, C.A.2    Pal, S.K.3
  • 62
    • 84891835308 scopus 로고    scopus 로고
    • [Online]. Available:
    • [Online]. Available: http://www.kyb.mpg.de/bs/people/spider/


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.