메뉴 건너뛰기




Volumn 46, Issue , 2014, Pages 67-95

Numerical simulation of flowing blood cells

Author keywords

Computational biofluid mechanics; Microcirculation; Particulate suspensions; Stokes flow

Indexed keywords

BIO-FLUID MECHANICS; COUPLED SYSTEMS; FLUID AND SOLIDS; GEOMETRIC FACTORS; PARTICULATE SUSPENSIONS; SIMULATION TECHNIQUE; STOKES FLOWS; SUSPENDED CELLS;

EID: 84891814057     PISSN: 00664189     EISSN: None     Source Type: Book Series    
DOI: 10.1146/annurev-fluid-010313-141349     Document Type: Article
Times cited : (300)

References (151)
  • 2
    • 77950520224 scopus 로고    scopus 로고
    • Lattice-Boltzmann method for complex flows
    • Aidun CK, Clausen Jr. 2010. Lattice-Boltzmann method for complex flows. Annu. Rev. FluidMech. 42:439-72
    • (2010) Annu. Rev. FluidMech. , vol.42 , pp. 439-472
    • Aidun, C.K.1    Clausen, J.R.2
  • 4
    • 64949158630 scopus 로고    scopus 로고
    • Relaxation dynamics of fluid membranes
    • Arroyo M, DeSimone A. 2009. Relaxation dynamics of fluid membranes. Phys. Rev. E 79:031915
    • (2009) Phys. Rev. , vol.E79 , pp. 031915
    • Arroyo, M.1    DeSimone, A.2
  • 5
    • 0019684859 scopus 로고
    • The time-dependent deformation of a capsule freely suspended in a linear shear flow
    • Barthès-Biesel D, Rallison JM. 1981. The time-dependent deformation of a capsule freely suspended in a linear shear flow. J. Fluid Mech. 113:251-67
    • (1981) J. Fluid Mech. , vol.113 , pp. 251-267
    • Barthès-Biesel, D.1    Rallison, J.M.2
  • 6
    • 0344981320 scopus 로고    scopus 로고
    • A fast solver for the Stokes equations with distributed forces in complex geometries
    • Biros G, Ying L, Zorin D. 2003. A fast solver for the Stokes equations with distributed forces in complex geometries. J. Comput. Phys. 193:317-48
    • (2003) J. Comput. Phys. , vol.193 , pp. 317-348
    • Biros, G.1    Ying, L.2    Zorin, D.3
  • 7
    • 0040703326 scopus 로고
    • Dual network model for red blood cell membranes
    • Boal DH, Seifert U, Zilker A. 1992. Dual network model for red blood cell membranes. Phys. Rev. Let. 69:3405-8
    • (1992) Phys. Rev. Let. , vol.69 , pp. 3405-3408
    • Boal, D.H.1    Seifert, U.2    Zilker, A.3
  • 10
    • 84861094391 scopus 로고    scopus 로고
    • Artificial microvascular network: A new tool for measuring rheologic properties of stored red blood cells
    • Burns JM, Yang X, Forouzan O, Sosa JM, Shevkoplyas SS. 2012. Artificial microvascular network: A new tool for measuring rheologic properties of stored red blood cells. Transfusion 52:1010-23
    • (2012) Transfusion , vol.52 , pp. 1010-1023
    • Burns, J.M.1    Yang, X.2    Forouzan, O.3    Sosa, J.M.4    Shevkoplyas, S.S.5
  • 12
    • 77955498833 scopus 로고    scopus 로고
    • Blood replacement with nanobiotechnologically engineered hemoglobin and hemoglobin nanocapsules
    • Chang TMS. 2010. Blood replacement with nanobiotechnologically engineered hemoglobin and hemoglobin nanocapsules. Wiley Intersci. Rev. Nanomed. Nanobiotechnol. 2:418-30
    • (2010) Wiley Intersci Rev. Nanomed. Nanobiotechnol. , vol.2 , pp. 418-430
    • Chang, T.M.S.1
  • 13
    • 0037142979 scopus 로고    scopus 로고
    • Analysis of an exact fractional step method
    • Chang W, Giraldo F, Perot B. 2002. Analysis of an exact fractional step method. J. Comput. Phys. 180:183-99
    • (2002) J. Comput. Phys. , vol.180 , pp. 183-199
    • Chang, W.1    Giraldo, F.2    Perot, B.3
  • 14
    • 0000362580 scopus 로고    scopus 로고
    • A fast adaptive multipole algorithm in three dimensions
    • Cheng H, Greengard L, Rokhlin V. 1999. A fast adaptive multipole algorithm in three dimensions. J. Comput. Phys. 55:468-98
    • (1999) J. Comput. Phys. , vol.55 , pp. 468-498
    • Cheng, H.1    Greengard, L.2    Rokhlin, V.3
  • 15
    • 0023161127 scopus 로고
    • Red cell deformability and its relevance to blood flow
    • Chien S. 1987. Red cell deformability and its relevance to blood flow. Annu. Rev. Physiol. 49:177-92
    • (1987) Annu. Rev. Physiol. , vol.49 , pp. 177-192
    • Chien, S.1
  • 16
    • 0018816619 scopus 로고
    • Rheology and hemodynamics
    • Cokelet GR. 1980. Rheology and hemodynamics. Annu. Rev. Physiol. 42:311-24
    • (1980) Annu. Rev. Physiol. , vol.42 , pp. 311-324
    • Cokelet, G.R.1
  • 17
    • 0014411259 scopus 로고
    • Rheological comparison of hemoglobin solutions and erythrocyte suspensions
    • Cokelet GR, Meiselman HJ. 1968. Rheological comparison of hemoglobin solutions and erythrocyte suspensions. Science 162:275-77
    • (1968) Science , vol.162 , pp. 275-277
    • Cokelet, G.R.1    Meiselman, H.J.2
  • 18
    • 0015248330 scopus 로고
    • Suspended particles in fluid flow through tubes
    • Cox RG, Mason SG. 1972. Suspended particles in fluid flow through tubes. Annu. Rev. FluidMech. 13:291-316
    • (1972) Annu. Rev. FluidMech. , vol.13 , pp. 291-316
    • Cox, R.G.1    Mason, S.G.2
  • 19
    • 33746693025 scopus 로고    scopus 로고
    • Molecularly based analysis of deformation of spectrin network and human erythrocyte
    • Dao M, Li J, Suresh S. 2006. Molecularly based analysis of deformation of spectrin network and human erythrocyte. Mater. Sci. Eng. C 26:1232-44
    • (2006) Mater. Sci. Eng. , vol.C26 , pp. 1232-1244
    • Dao, M.1    Li, J.2    Suresh, S.3
  • 20
    • 0142075533 scopus 로고    scopus 로고
    • Mechanics of the human red blood cell deformed by optical tweezers
    • Dao M, Lim CT, Suresh S. 2003. Mechanics of the human red blood cell deformed by optical tweezers. J. Mech. Phys. Solids 51:2259-80
    • (2003) J. Mech. Phys. Solids , vol.51 , pp. 2259-2280
    • Dao, M.1    Lim, C.T.2    Suresh, S.3
  • 21
    • 33846823909 scopus 로고
    • Particle mesh Ewald: An n log(n) method for Ewald sums in large systems
    • Darden T, York D, Pedersen L. 1993. Particle mesh Ewald: An n log(n) method for Ewald sums in large systems. J. Chem. Phys. 98:10089-92
    • (1993) J. Chem. Phys. , vol.98 , pp. 10089-10092
    • Darden, T.1    York, D.2    Pedersen, L.3
  • 23
    • 79952164231 scopus 로고    scopus 로고
    • The sensing of poorly deformable red blood cells by the human spleen can be mimicked in vitro
    • Deplaine G, Safeukui I, Jeddi F, Lacoste F, Brousse V, et al. 2011. The sensing of poorly deformable red blood cells by the human spleen can be mimicked in vitro. Blood 117:e88-95
    • (2011) Blood , vol.117
    • Deplaine, G.1    Safeukui, I.2    Jeddi, F.3    Lacoste, F.4    Brousse, V.5
  • 25
    • 34447285772 scopus 로고    scopus 로고
    • Interfacial dynamics in Stokes flow via a three-dimensional fully-implicit interfacial spectral boundary element algorithm
    • Dimitrakopoulos P. 2007. Interfacial dynamics in Stokes flow via a three-dimensional fully-implicit interfacial spectral boundary element algorithm. J. Comput. Phys. 225:408-26
    • (2007) J. Comput. Phys. , vol.225 , pp. 408-426
    • Dimitrakopoulos, P.1
  • 26
    • 0037986309 scopus 로고    scopus 로고
    • Extension of the lattice-Boltzmann method for direct simulation of suspended particles near contact
    • Ding EJ, Aidun CK. 2003. Extension of the lattice-Boltzmann method for direct simulation of suspended particles near contact. J. Stat. Phys. 112:695-703
    • (2003) J. Stat. Phys. , vol.112 , pp. 695-703
    • Ding, E.J.1    Aidun, C.K.2
  • 27
    • 0031705402 scopus 로고    scopus 로고
    • Simulations of the erythrocyte cytoskeleton at large deformation II Micropipette aspiration
    • Discher DE, Boey SK, Boal DH. 1998. Simulations of the erythrocyte cytoskeleton at large deformation. II. Micropipette aspiration. Biophys. J. 75:1584-97
    • (1998) Biophys. J. , vol.75 , pp. 1584-1597
    • Discher, D.E.1    Boey, S.K.2    Boal, D.H.3
  • 28
    • 0027938023 scopus 로고
    • Molecular maps of red-cell deformation: Hidden elasticity and in situ connectivity
    • Discher DE, Mohandas N, Evans EA. 1994. Molecular maps of red-cell deformation: Hidden elasticity and in situ connectivity. Science 266:1032-35
    • (1994) Science , vol.266 , pp. 1032-1035
    • Discher, D.E.1    Mohandas, N.2    Evans, E.A.3
  • 29
    • 67650467798 scopus 로고    scopus 로고
    • Three-dimensional computational modeling of multiple deformable cells flowing in microvessels
    • Doddi SK, Bagchi P. 2009. Three-dimensional computational modeling of multiple deformable cells flowing in microvessels. Phys. Rev. E 79:046318
    • (2009) Phys. Rev. , vol.E79 , pp. 046318
    • Doddi, S.K.1    Bagchi, P.2
  • 30
    • 84857714014 scopus 로고    scopus 로고
    • Tank-Treading of swollen erythrocytes in shear flows
    • Dodson WR III, Dimitrakopoulos P. 2012. Tank-Treading of swollen erythrocytes in shear flows. Phys. Rev. E 85:021922
    • (2012) Phys. Rev. , vol.E85 , pp. 021922
    • Dodson III, W.R.1    Dimitrakopoulos, P.2
  • 31
    • 0023525420 scopus 로고
    • Dynamic simulation of hydrodynamically interacting particles
    • Durlofsky L, Brady JF, Bossis G. 1987. Dynamic simulation of hydrodynamically interacting particles. J. Fluid Mech. 180:21-49
    • (1987) J. Fluid Mech. , vol.180 , pp. 21-49
    • Durlofsky, L.1    Brady, J.F.2    Bossis, G.3
  • 32
    • 0020957075 scopus 로고
    • Bending elastic modulus of red blood cell membrane derived from buckling instability in micropipet aspiration tests
    • Evans EA. 1983. Bending elastic modulus of red blood cell membrane derived from buckling instability in micropipet aspiration tests. Biophys. J. 43:27-30
    • (1983) Biophys. J. , vol.43 , pp. 27-30
    • Evans, E.A.1
  • 35
    • 0016777054 scopus 로고
    • Intrinsic material properties of the erythrocyte membrane indicated by mechanical analysis of deformation
    • Evans EA, La Celle PA. 1975. Intrinsic material properties of the erythrocyte membrane indicated by mechanical analysis of deformation. Blood 45:29-43
    • (1975) Blood , vol.45 , pp. 29-43
    • Evans, E.A.1    La Celle, P.A.2
  • 36
    • 0017757767 scopus 로고
    • Osmotic correction to elastic area compressibility measurements on red cell membrane
    • Evans EA, Waugh R. 1977. Osmotic correction to elastic area compressibility measurements on red cell membrane. Biophys. J. 20:307-13
    • (1977) Biophys. J. , vol.20 , pp. 307-313
    • Evans, E.A.1    Waugh, R.2
  • 37
    • 0001331302 scopus 로고
    • The viscosity of the blood in narrow capillary tubes
    • Fåhræus R, Lindqvist T. 1931. The viscosity of the blood in narrow capillary tubes. Am. J. Physiol. 96:562-68
    • (1931) Am. J. Physiol. , vol.96 , pp. 562-568
    • Fåhræus, R.1    Lindqvist, T.2
  • 38
    • 77952786405 scopus 로고    scopus 로고
    • A multiscale red blood cell model with accurate mechanics, rheology, and dynamics
    • Fedosov DA, Caswell B, Karniadakis GE. 2010. A multiscale red blood cell model with accurate mechanics, rheology, and dynamics. Biophys. J. 98:2215-25
    • (2010) Biophys. J. , vol.98 , pp. 2215-2225
    • Fedosov, D.A.1    Caswell, B.2    Karniadakis, G.E.3
  • 40
    • 0036469957 scopus 로고    scopus 로고
    • Electro-osmosis in a nanometer-scale channel studied by atomistic simulation
    • Freund JB. 2002. Electro-osmosis in a nanometer-scale channel studied by atomistic simulation. J. Chem. Phys. 116:2194-200
    • (2002) J. Chem. Phys. , vol.116 , pp. 2194-2200
    • Freund, J.B.1
  • 41
    • 33847657959 scopus 로고    scopus 로고
    • Leukocyte margination in a model microvessel
    • Freund JB. 2007. Leukocyte margination in a model microvessel. Phys. Fluids 19:023301
    • (2007) Phys. Fluids , vol.19 , pp. 023301
    • Freund, J.B.1
  • 42
    • 84888805871 scopus 로고    scopus 로고
    • The flow of red blood cells through a narrow spleen-like slit
    • Freund JB. 2013. The flow of red blood cells through a narrow spleen-like slit. Phys. Fluids 25:110807
    • (2013) Phys. Fluids , vol.25 , pp. 110807
    • Freund, J.B.1
  • 43
    • 79952817091 scopus 로고    scopus 로고
    • Cellular flow in a small blood vessel
    • Freund JB, Orescanin MM. 2011. Cellular flow in a small blood vessel. J. Fluid Mech. 671:466-90
    • (2011) J. Fluid Mech. , vol.671 , pp. 466-490
    • Freund, J.B.1    Orescanin, M.M.2
  • 44
    • 84861975858 scopus 로고    scopus 로고
    • Transport of particles by magnetic forces and cellular blood flow in a model microvessel
    • Freund JB, Shapiro B. 2012. Transport of particles by magnetic forces and cellular blood flow in a model microvessel. Phys. Fluids 24:051904
    • (2012) Phys. Fluids , vol.24 , pp. 051904
    • Freund, J.B.1    Shapiro, B.2
  • 45
    • 60749102237 scopus 로고    scopus 로고
    • Multi-particle collision dynamics: A particle-based mesoscale simulation approach to the hydrodynamics of complex fluids
    • III, ed. C Holm, K Kremer. Polym. Sci. 221 Berlin: Springer Verlag
    • Gompper G, Ihle T, Kroll DM, Winkler RG. 2008. Multi-particle collision dynamics: A particle-based mesoscale simulation approach to the hydrodynamics of complex fluids. In Advanced Computer Simulation Approaches for Soft Matter Sciences III, ed. C Holm, K Kremer, pp. 1-87. Adv. Polym. Sci. 221. Berlin: Springer-Verlag
    • (2008) Advanced Computer Simulation Approaches for Soft Matter Sciences , pp. 1-87
    • Gompper, G.1    Ihle, T.2    Kroll, D.M.3    Winkler, R.G.4
  • 47
    • 0000396658 scopus 로고
    • A fast algorithm for particle simulations
    • Greengard L, Rokhlin V. 1987. A fast algorithm for particle simulations. J. Comput. Phys. 73:325-48
    • (1987) J. Comput. Phys. , vol.73 , pp. 325-348
    • Greengard, L.1    Rokhlin, V.2
  • 50
    • 71849086982 scopus 로고    scopus 로고
    • Microconfined flow behavior of red blood cells in vitro
    • Guido S, Tomaiuolo G. 2009. Microconfined flow behavior of red blood cells in vitro. C. R. Phys. 10:751-63
    • (2009) C. R. Phys. , vol.10 , pp. 751-763
    • Guido, S.1    Tomaiuolo, G.2
  • 51
    • 84855930061 scopus 로고    scopus 로고
    • Microfluidic lysis of human blood for leukocyte analysis using single cell impedance cytometry
    • Han X, Van Berkel C, Gwyer J, Capretto L, Morgan H. 2012. Microfluidic lysis of human blood for leukocyte analysis using single cell impedance cytometry. Anal. Chem. 84:1070-75
    • (2012) Anal. Chem. , vol.84 , pp. 1070-1075
    • Han, X.1    Van Berkel, C.2    Gwyer, J.3    Capretto, L.4    Morgan, H.5
  • 53
    • 74349121388 scopus 로고    scopus 로고
    • A multiscale model for red blood cell mechanics
    • Hartmann D. 2010. A multiscale model for red blood cell mechanics. Biomech. Model. Mechanobiol. 9:1-17
    • (2010) Biomech. Model. Mechanobiol. , vol.9 , pp. 1-17
    • Hartmann, D.1
  • 54
    • 84886764942 scopus 로고
    • On the periodic fundamental solutions of the Stokes equations and their application to viscous flow past a cubic array of cylinders
    • Hashimoto H. 1959. On the periodic fundamental solutions of the Stokes equations and their application to viscous flow past a cubic array of cylinders. J. Fluid Mech. 5:317-28
    • (1959) J. Fluid Mech. , vol.5 , pp. 317-328
    • Hashimoto, H.1
  • 55
    • 0034866574 scopus 로고    scopus 로고
    • Elastic thickness compressibilty of the red cellmembrane
    • Heinrich V, Ritchie K, Mohandas N, Evans E. 2001. Elastic thickness compressibilty of the red cellmembrane. Biophys. J. 81:1452-63
    • (2001) Biophys. J. , vol.81 , pp. 1452-1463
    • Heinrich, V.1    Ritchie, K.2    Mohandas, N.3    Evans, E.4
  • 57
    • 84945118518 scopus 로고
    • Boltzmann approach to lattice gas simulations
    • Higuera FJ, Jiménez J. 1989. Boltzmann approach to lattice gas simulations. Euophys. Lett. 9:663-68
    • (1989) Euophys. Lett. , vol.9 , pp. 663-668
    • Higuera, F.J.1    Jiménez, J.2
  • 58
    • 0015847091 scopus 로고
    • Measurement of the elastic modulus for red cell membrane using a fluid mechanical technique
    • Hochmuth RM, Mohandas N, Blackshear Jr. PL. 1973. Measurement of the elastic modulus for red cell membrane using a fluid mechanical technique. Biophys. J. 13:747-62
    • (1973) Biophys. J. , vol.13 , pp. 747-762
    • Hochmuth, R.M.1    Mohandas, N.2    Blackshear Jr., P.L.3
  • 60
    • 0023161133 scopus 로고
    • Erythrocyte membrane elasticity and viscosity
    • Hochmuth RM, Waugh RE. 1987. Erythrocyte membrane elasticity and viscosity. Annu. Rev. Physiol. 49:209-19
    • (1987) Annu. Rev. Physiol. , vol.49 , pp. 209-219
    • Hochmuth, R.M.1    Waugh, R.E.2
  • 62
    • 84859319305 scopus 로고    scopus 로고
    • Development and validation of a low cost blood filtration element separating plasma from undiluted whole blood
    • Homsy A, Van Der Wal PD, Doll W, Schaller R, Korsatko S, et al. 2012. Development and validation of a low cost blood filtration element separating plasma from undiluted whole blood. Biomicrofluidics 6:012804
    • (2012) Biomicrofluidics , vol.6 , pp. 012804
    • Homsy, A.1    Van Der Wal, P.D.2    Doll, W.3    Schaller, R.4    Korsatko, S.5
  • 63
    • 84950109965 scopus 로고
    • Simulatingmicroscopic hydrodynamic phenomena with dissipative particle dynamics
    • Hoogerbrugge PJ, Koelman JMVA. 1992. Simulatingmicroscopic hydrodynamic phenomena with dissipative particle dynamics. Europhys. Lett. 19:155-60
    • (1992) Europhys. Lett. , vol.19 , pp. 155-160
    • Hoogerbrugge, P.J.1    Koelman, J.M.V.A.2
  • 66
    • 0036436626 scopus 로고    scopus 로고
    • Cellular fluid mechanics
    • Kamm RD. 2002. Cellular fluid mechanics. Annu. Rev. Fluid Mech. 34:211-32
    • (2002) Annu. Rev. Fluid Mech. , vol.34 , pp. 211-232
    • Kamm, R.D.1
  • 67
    • 84862818864 scopus 로고    scopus 로고
    • Removal of malaria-infected red blood cells using magnetic cell separators: A computational study
    • Kim J, Massoudi M, Antaki JF, Gandini A. 2012. Removal of malaria-infected red blood cells using magnetic cell separators: A computational study. Appl. Math. Comput. 218:6841-50
    • (2012) Appl. Math. Comput. , vol.218 , pp. 6841-6850
    • Kim, J.1    Massoudi, M.2    Antaki, J.F.3    Gandini, A.4
  • 68
    • 46549092989 scopus 로고
    • Application of a fractional-step method to incompressible Navier-Stokes equations
    • Kim J, Moin P. 1985. Application of a fractional-step method to incompressible Navier-Stokes equations. J. Comput. Phys. 59:308-23
    • (1985) J. Comput. Phys. , vol.59 , pp. 308-323
    • Kim, J.1    Moin, P.2
  • 70
    • 14544289547 scopus 로고    scopus 로고
    • Multiscale flow simulations using particles
    • Koumoutsakos P. 2005. Multiscale flow simulations using particles. Annu. Rev. Fluid Mech. 37:457-87
    • (2005) Annu. Rev. Fluid Mech. , vol.37 , pp. 457-487
    • Koumoutsakos, P.1
  • 72
    • 50349091167 scopus 로고    scopus 로고
    • Adhesive dynamics simulation of neutrophil arrest with stochastic activation
    • Krasik EF, Caputo KE, Hammer DA. 2008. Adhesive dynamics simulation of neutrophil arrest with stochastic activation. Biophys. J. 95:1716-28
    • (2008) Biophys. J. , vol.95 , pp. 1716-1728
    • Krasik, E.F.1    Caputo, K.E.2    Hammer, D.A.3
  • 73
    • 0039646846 scopus 로고    scopus 로고
    • On the effect of numerical errors in large eddy simulations of turbulent flows
    • Kravchenko AG, Moin P. 1997. On the effect of numerical errors in large eddy simulations of turbulent flows. J. Comput. Phys. 131:310-22
    • (1997) J. Comput. Phys. , vol.131 , pp. 310-322
    • Kravchenko, A.G.1    Moin, P.2
  • 74
    • 84864566434 scopus 로고    scopus 로고
    • Accelerated boundary integral method for multiphase flow in non-periodic geometries
    • Kumar A, Graham MD. 2012. Accelerated boundary integral method for multiphase flow in non-periodic geometries. J. Comput. Phys. 231:6682-713
    • (2012) J. Comput. Phys. , vol.231 , pp. 6682-6713
    • Kumar, A.1    Graham, M.D.2
  • 75
    • 84865791204 scopus 로고    scopus 로고
    • Mechanism of margination in confined flows of blood and other multicomponent suspensions
    • Kumar A, Graham MD. 2012. Mechanism of margination in confined flows of blood and other multicomponent suspensions. Phys. Rev. Let. 109:108102
    • (2012) Phys. Rev. Let. , vol.109 , pp. 108102
    • Kumar, A.1    Graham, M.D.2
  • 76
    • 0035842852 scopus 로고    scopus 로고
    • A critical evaluation of the resolution properties of B-spline and compact finite difference methods
    • Kwok WY, Moser RD, Jiménez J. 2001. A critical evaluation of the resolution properties of B-spline and compact finite difference methods. J. Comput. Phys. 174:510-51
    • (2001) J. Comput. Phys. , vol.174 , pp. 510-551
    • Kwok, W.Y.1    Moser, R.D.2    Jiménez, J.3
  • 77
    • 0035538509 scopus 로고    scopus 로고
    • Lattice-Boltzmann simulations of particle-fluid suspensions
    • Ladd AJC, Verberg R. 2001. Lattice-Boltzmann simulations of particle-fluid suspensions. J. Stat. Phys. 104:1191-251
    • (2001) J. Stat. Phys. , vol.104 , pp. 1191-1251
    • Ladd, A.J.C.1    Verberg, R.2
  • 79
    • 0030188166 scopus 로고    scopus 로고
    • A multipole-based algorithm for efficient calculation of forces and potentials in macroscopic periodic assemblies of particles
    • Lambert CG, Darden TA, Board Jr. JA. 1996. A multipole-based algorithm for efficient calculation of forces and potentials in macroscopic periodic assemblies of particles. J. Comput. Phys. 126:274-85
    • (1996) J. Comput. Phys. , vol.126 , pp. 274-285
    • Lambert, C.G.1    Darden, T.A.2    Board Jr., J.A.3
  • 81
    • 0018920953 scopus 로고
    • Particle motions in a viscous fluid
    • Leal LG. 1980. Particle motions in a viscous fluid. Annu. Rev. Fluid Mech. 12:435-76
    • (1980) Annu. Rev. Fluid Mech. , vol.12 , pp. 435-476
    • Leal, L.G.1
  • 82
    • 0031129202 scopus 로고    scopus 로고
    • Immersed interface methods for Stokes flow with elastic boundaries or surface tension
    • LeVeque RJ, Li Z. 2003. Immersed interface methods for Stokes flow with elastic boundaries or surface tension. SIAM J. Sci. Comput. 18:709-35
    • (2003) SIAM J Sci. Comput. , vol.18 , pp. 709-735
    • LeVeque, R.J.1    Li, Z.2
  • 83
    • 17844411207 scopus 로고    scopus 로고
    • Spectrin-level modeling of the cytoskeleton and optical tweezers stretching of the erythrocyte
    • Li J, Dao M, Lim CT, Suresh S. 2005. Spectrin-level modeling of the cytoskeleton and optical tweezers stretching of the erythrocyte. Biophys. J. 88:3707-19
    • (2005) Biophys. J. , vol.88 , pp. 3707-3719
    • Li, J.1    Dao, M.2    Lim, C.T.3    Suresh, S.4
  • 84
    • 33845274729 scopus 로고    scopus 로고
    • An augmented approach for Stokes equations with a discontinuous viscosity and singular forces
    • Li Z, Ito K, Lai MC. 2007. An augmented approach for Stokes equations with a discontinuous viscosity and singular forces. Comput. Fluids 36:622-35
    • (2007) Comput. Fluids , vol.36 , pp. 622-635
    • Li, Z.1    Ito, K.2    Lai, M.C.3
  • 85
    • 0019967690 scopus 로고
    • Geometric, osmotic, and membrane mechanical properties of densityseparated human red cells
    • Linderkamp O, Meiselman HJ. 1982. Geometric, osmotic, and membrane mechanical properties of densityseparated human red cells. Blood 59:1121-27
    • (1982) Blood , vol.59 , pp. 1121-1127
    • Linderkamp, O.1    Meiselman, H.J.2
  • 86
    • 0025946698 scopus 로고
    • How thick is the glycocalyx of human erythrocytes?
    • Linss W, Pilgrim C, Feuerstein H. 1991. How thick is the glycocalyx of human erythrocytes?. Acta Histochem. 91:101-4
    • (1991) Acta Histochem. , vol.91 , pp. 101-104
    • Linss, W.1    Pilgrim, C.2    Feuerstein, H.3
  • 87
    • 16244364050 scopus 로고    scopus 로고
    • Microconfined flow behavior of red blood cells in vitro
    • Lipowsky HH. 2005. Microconfined flow behavior of red blood cells in vitro. Microcirculation 12:5-15
    • (2005) Microcirculation , vol.12 , pp. 5-15
    • Lipowsky, H.H.1
  • 88
    • 57849117144 scopus 로고    scopus 로고
    • Simulating deformable particle suspensions using a coupled lattice-Boltzmann and finite-element method
    • MacMeccan RM, Clausen JR, Neitzel GP, Aidun CK. 2009. Simulating deformable particle suspensions using a coupled lattice-Boltzmann and finite-element method. J. Fluid Mech. 618:13-39
    • (2009) J. Fluid Mech. , vol.618 , pp. 13-39
    • MacMeccan, R.M.1    Clausen, J.R.2    Neitzel, G.P.3    Aidun, C.K.4
  • 89
    • 1542377627 scopus 로고    scopus 로고
    • Computational analysis of the deformability of leukocytes modeled with viscous and elastic structural components
    • Marella SV, Udaykumar HS. 2004. Computational analysis of the deformability of leukocytes modeled with viscous and elastic structural components. Phys. Fluids 16:244-64
    • (2004) Phys. Fluids , vol.16 , pp. 244-264
    • Marella, S.V.1    Udaykumar, H.S.2
  • 91
    • 84956212051 scopus 로고
    • The pathological behaviour of sheared hard spheres with hydrodynamic interactions
    • Melrose JR, Ball RC. 1995. The pathological behaviour of sheared hard spheres with hydrodynamic interactions. Europhys. Lett. 32:535-40
    • (1995) Europhys. Lett. , vol.32 , pp. 535-540
    • Melrose, J.R.1    Ball, R.C.2
  • 93
    • 17844376298 scopus 로고    scopus 로고
    • Nonlinear elastic and viscoelastic deformation of the human red blood cell with optical tweezers
    • Mills JP, Qie L, DaoM, Lim CT, Suresh S. 2004. Nonlinear elastic and viscoelastic deformation of the human red blood cell with optical tweezers. Mech. Chem. Biosyst. 1:169-80
    • (2004) Mech. Chem. Biosyst. , vol.1 , pp. 169-180
    • Mills, J.P.1    Qie, L.2    Dao, M.3    Lim, C.T.4    Suresh, S.5
  • 95
    • 51649126018 scopus 로고    scopus 로고
    • Platelet adhesive dynamics
    • Mody NA, King MR. 2008. Platelet adhesive dynamics. Biophys. J. 95:2539-74
    • (2008) Biophys. J. , vol.95 , pp. 2539-2574
    • Mody, N.A.1    King, M.R.2
  • 96
    • 0028263839 scopus 로고
    • Mechanical properties of the red cellmembrane in relation tomolecular structure and genetic defects
    • Mohandas N, Evans E. 1994. Mechanical properties of the red cellmembrane in relation tomolecular structure and genetic defects. Annu. Rev. Biophys. Biomol. Struct. 23:787-818
    • (1994) Annu. Rev. Biophys. Biomol. Struct. , vol.23 , pp. 787-818
    • Mohandas, N.1    Evans, E.2
  • 98
    • 0000583531 scopus 로고    scopus 로고
    • Direct numerical simulation: A tool in turbulence research
    • Moin P, Mahesh K. 1998. Direct numerical simulation: A tool in turbulence research. Annu. Rev. Fluid Mech. 30:539-78
    • (1998) Annu. Rev. Fluid Mech. , vol.30 , pp. 539-578
    • Moin, P.1    Mahesh, K.2
  • 99
    • 0029373654 scopus 로고
    • A spectral boundary element approach to three-dimensional Stokes flow
    • Muldowney GP, Higdon JJL. 1995. A spectral boundary element approach to three-dimensional Stokes flow. J. Fluid Mech. 298:167-92
    • (1995) J. Fluid Mech. , vol.298 , pp. 167-192
    • Muldowney, G.P.1    Higdon, J.J.L.2
  • 100
    • 81255184413 scopus 로고    scopus 로고
    • Native ultrastructure of the red cell cytoskeleton by cryo-electron tomography
    • Nans A, Mohandas N, Stokes DL. 2011. Native ultrastructure of the red cell cytoskeleton by cryo-electron tomography. Biophys. J. 101:2341-50
    • (2011) Biophys. J. , vol.101 , pp. 2341-2350
    • Nans, A.1    Mohandas, N.2    Stokes, D.L.3
  • 101
    • 41349117562 scopus 로고    scopus 로고
    • Lubrication corrections for lattice-Boltzmann simulations of particle suspensions
    • Nguyen NQ, Ladd AJC. 2002. Lubrication corrections for lattice-Boltzmann simulations of particle suspensions. Phys. Rev. E 66:046708
    • (2002) Phys. Rev. , vol.E66 , pp. 046708
    • Nguyen, N.Q.1    Ladd, A.J.C.2
  • 102
    • 26444614204 scopus 로고    scopus 로고
    • Shape transitions of fluid vesicles and red blood cells in capillary flows
    • Noguchi H, Gompper G. 2005. Shape transitions of fluid vesicles and red blood cells in capillary flows. Proc. Natl. Acad. Sci. USA 102:14159-64
    • (2005) Proc. Natl. Acad. Sci. USA , vol.102 , pp. 14159-14164
    • Noguchi, H.1    Gompper, G.2
  • 103
    • 0021641959 scopus 로고
    • Effective viscosity of a periodic suspension
    • Nunan KC, Keller JB. 1984. Effective viscosity of a periodic suspension. J. Fluid Mech. 142:269-87
    • (1984) J. Fluid Mech. , vol.142 , pp. 269-287
    • Nunan, K.C.1    Keller, J.B.2
  • 104
    • 0001143605 scopus 로고
    • U? ber die randwertaufgaben der hydrodynamik zaddddther flu? ssigkeiten
    • Odqvist FHG. 1930. U? ber die randwertaufgaben der hydrodynamik zaddddther flu? ssigkeiten. Math Z. 32:329-75
    • (1930) Math Z. , vol.32 , pp. 329-375
    • Odqvist, F.H.G.1
  • 106
    • 79960912973 scopus 로고    scopus 로고
    • Predicting dynamics and rheology of blood flow: A comparative study of multiscale and low-dimensional models of red blood cells
    • Pan W, Fedosov DA, Caswell B, Karniadakis GE. 2011. Predicting dynamics and rheology of blood flow: A comparative study of multiscale and low-dimensional models of red blood cells. Microvasc. Res. 82:163-70
    • (2011) Microvasc. Res. , vol.82 , pp. 163-170
    • Pan, W.1    Fedosov, D.A.2    Caswell, B.3    Karniadakis, G.E.4
  • 108
    • 52149120726 scopus 로고    scopus 로고
    • Accurate coarse-grained modeling of red blood cells
    • Pivkin IV, Karniadakis GE. 2008. Accurate coarse-grained modeling of red blood cells. Phys. Rev. Let. 101:118105
    • (2008) Phys. Rev. Let. , vol.101 , pp. 118105
    • Pivkin, I.V.1    Karniadakis, G.E.2
  • 109
    • 0030172529 scopus 로고    scopus 로고
    • Comments on PPPM, FMM, and the Ewald method for large periodic Coulombic systems
    • Pollock E, Glosli J. 1996. Comments on PPPM, FMM, and the Ewald method for large periodic Coulombic systems. Comput. Phys. Commun. 95:93-110
    • (1996) Comput. Phys. Commun. , vol.95 , pp. 93-110
    • Pollock, E.1    Glosli, J.2
  • 110
    • 0024368187 scopus 로고
    • Theory of oxygen transport to tissue
    • Popel AS. 1989. Theory of oxygen transport to tissue. Crit. Rev. Biomed. Eng. 17:257-321
    • (1989) Crit. Rev. Biomed. Eng. , vol.17 , pp. 257-321
    • Popel, A.S.1
  • 113
    • 0000736524 scopus 로고    scopus 로고
    • Interfacial dynamics for Stokes flow
    • Pozrikidis C. 2001. Interfacial dynamics for Stokes flow. J. Comput. Phys. 169:250-301
    • (2001) J. Comput. Phys. , vol.169 , pp. 250-301
    • Pozrikidis, C.1
  • 114
    • 15844421247 scopus 로고    scopus 로고
    • Axisymmetric motion of a file of red blood cells through capillaries
    • Pozrikidis C. 2005. Axisymmetric motion of a file of red blood cells through capillaries. Phys. Fluids 17:031503
    • (2005) Phys. Fluids , vol.17 , pp. 031503
    • Pozrikidis, C.1
  • 115
    • 70349570748 scopus 로고    scopus 로고
    • Numerical simulation of blood flow through microvascular capillary networks
    • Pozrikidis C. 2009. Numerical simulation of blood flow through microvascular capillary networks. Bull. Math. Biol. 71:1520-41
    • (2009) Bull. Math. Biol. , vol.71 , pp. 1520-1541
    • Pozrikidis, C.1
  • 119
    • 0000652727 scopus 로고
    • Anumerical study of the deformation and burst of a viscous drop in an extensional flow
    • Rallison JM, Acrivos A. 1978.Anumerical study of the deformation and burst of a viscous drop in an extensional flow. J. Fluid Mech. 89:191-200
    • (1978) J. Fluid Mech. , vol.89 , pp. 191-200
    • Rallison, J.M.1    Acrivos, A.2
  • 120
    • 80053997907 scopus 로고    scopus 로고
    • Coupling the lattice-Boltzmann and spectrin-link methods for the direct numerical simulation of cellular blood flow
    • Reasor DA Jr, Clausen JR, Aidun CK. 2012. Coupling the lattice-Boltzmann and spectrin-link methods for the direct numerical simulation of cellular blood flow. Int. J. Numer. Methods Fluids 68:767-81
    • (2012) Int. J. Numer. Methods Fluids , vol.68 , pp. 767-781
    • Reasor Jr., D.A.1    Clausen, J.R.2    Aidun, C.K.3
  • 121
    • 15844377065 scopus 로고    scopus 로고
    • A smooth particle-mesh Ewald algorithm for Stokes suspension simulations: The sedimentation of fibers
    • Saintillan D, Darve E, Shaqfeh ESG. 2005. A smooth particle-mesh Ewald algorithm for Stokes suspension simulations: The sedimentation of fibers. Phys. Fluids 17:033301
    • (2005) Phys. Fluids , vol.17 , pp. 033301
    • Saintillan, D.1    Darve, E.2    Shaqfeh, E.S.G.3
  • 122
    • 5844419608 scopus 로고    scopus 로고
    • An O(N) algorithm for Stokes and Laplace interactions of particles
    • Sangania AS, Mo G. 1996. An O(N) algorithm for Stokes and Laplace interactions of particles. Phys. Fluids 8:1990-2010
    • (1996) Phys. Fluids , vol.8 , pp. 1990-2010
    • Sangania, A.S.1    Mo, G.2
  • 124
    • 14544267196 scopus 로고    scopus 로고
    • Mechanics of red blood cells and blood flow in narrow tubes
    • ed. C Pozrikidis. Boca Raton, FL: Chapman & Hall/CRC
    • Secomb TW. 2003. Mechanics of red blood cells and blood flow in narrow tubes. In Modeling and Simulation of Capsules and Biological Cells, ed. C Pozrikidis, pp. 163-96. Boca Raton, FL: Chapman & Hall/CRC
    • (2003) Modeling and Simulation of Capsules and Biological Cells , pp. 163-196
    • Secomb, T.W.1
  • 126
    • 0020136896 scopus 로고
    • Surface flow of viscoelastic membranes in viscous fluids
    • Secomb TW, Skalak R. 1982. Surface flow of viscoelastic membranes in viscous fluids. Q. J. Mech. Appl.Math. 35:233-47
    • (1982) Q. J. Mech. Appl.Math. , vol.35 , pp. 233-247
    • Secomb, T.W.1    Skalak, R.2
  • 127
    • 0022661791 scopus 로고
    • Flow of axisymmetrical red blood cells in narrow capillaries
    • Secomb TW, Skalak R, Ozkaya N, Gross JF. 1986. Flow of axisymmetrical red blood cells in narrow capillaries. J. Fluid Mech. 163:405-23
    • (1986) J. Fluid Mech. , vol.163 , pp. 405-423
    • Secomb, T.W.1    Skalak, R.2    Ozkaya, N.3    Gross, J.F.4
  • 128
    • 79955677915 scopus 로고    scopus 로고
    • Boundary integral and fast multipole method for two dimensional vesicle sets in Poiseuille flow
    • Selmi H, Elasmi L, Ghigliotti G, Misbah C. 2011. Boundary integral and fast multipole method for two dimensional vesicle sets in Poiseuille flow. Discrete Contin. Dyn. Syst. B 15:1065-76
    • (2011) Discrete Contin. Dyn. Syst. , vol.B15 , pp. 1065-1076
    • Selmi, H.1    Elasmi, L.2    Ghigliotti, G.3    Misbah, C.4
  • 129
    • 0035842089 scopus 로고    scopus 로고
    • Accelerated Stokesian dynamics simulations
    • Sierou A, Brady JF. 2001. Accelerated Stokesian dynamics simulations. J. Fluid Mech. 448:115-46
    • (2001) J. Fluid Mech. , vol.448 , pp. 115-146
    • Sierou, A.1    Brady, J.F.2
  • 131
    • 0015595017 scopus 로고
    • Strain energy function of red blood cell membranes
    • Skalak R, Tozeren A, Zarda RP, Chien S. 1973. Strain energy function of red blood cell membranes. Biophys. J. 13:245-80
    • (1973) Biophys. J. , vol.13 , pp. 245-280
    • Skalak, R.1    Tozeren, A.2    Zarda, R.P.3    Chien, S.4
  • 132
    • 14544306929 scopus 로고    scopus 로고
    • Fluid mechanics and rheology of dense suspensions
    • Stickel JJ, Powell RL. 2005. Fluid mechanics and rheology of dense suspensions. Annu. Rev. Fluid Mech. 37:129-49
    • (2005) Annu. Rev. Fluid Mech. , vol.37 , pp. 129-149
    • Stickel, J.J.1    Powell, R.L.2
  • 133
    • 39449095704 scopus 로고    scopus 로고
    • Lattice-Boltzmann simulation of blood flow in digitized vessel networks
    • Sun C, Munn LL. 2008. Lattice-Boltzmann simulation of blood flow in digitized vessel networks. Comput. Math. Appl. 55:1594-600
    • (2008) Comput. Math. Appl. , vol.55 , pp. 1594-1600
    • Sun, C.1    Munn, L.L.2
  • 134
    • 33749132791 scopus 로고    scopus 로고
    • Mechanical response of human red blood cells in health and disease: Some structure-propertyfunction relationships
    • Suresh S. 2006. Mechanical response of human red blood cells in health and disease: Some structure-propertyfunction relationships. J. Mater. Res. 21:1871-77
    • (2006) J. Mater. Res. , vol.21 , pp. 1871-1877
    • Suresh, S.1
  • 136
    • 37249064654 scopus 로고    scopus 로고
    • A fast multipole method for the three-dimensional Stokes equations
    • Tornberg AK, Greengard L. 2008. A fast multipole method for the three-dimensional Stokes equations. J. Comput. Phys. 227:1613-19
    • (2008) J. Comput. Phys. , vol.227 , pp. 1613-1619
    • Tornberg, A.K.1    Greengard, L.2
  • 137
    • 79955741985 scopus 로고    scopus 로고
    • A fast algorithm for simulating vesicle flows in three dimensions
    • Veerapaneni SK, Rahimian A, Biros G, Zorin D. 2011. A fast algorithm for simulating vesicle flows in three dimensions. J. Comput. Phys. 230:5610-34
    • (2011) J. Comput. Phys. , vol.230 , pp. 5610-5634
    • Veerapaneni, S.K.1    Rahimian, A.2    Biros, G.3    Zorin, D.4
  • 138
    • 77953088490 scopus 로고    scopus 로고
    • Fluid-structure interaction methods in biological flows with special emphasis on heart valve dynamics
    • Vigmostad SC, Udaykumar HS, Lu J, Chandran KB. 2010. Fluid-structure interaction methods in biological flows with special emphasis on heart valve dynamics. Int. J. Numer. Methods Biomed. Eng. 26:435-70
    • (2010) Int. J. Numer. Methods Biomed. Eng. , vol.26 , pp. 435-470
    • Vigmostad, S.C.1    Udaykumar, H.S.2    Lu, J.3    Chandran, K.B.4
  • 139
    • 0018350757 scopus 로고
    • Thermoelasticity of red blood cell membrane
    • Waugh R, Evans EA. 1979. Thermoelasticity of red blood cell membrane. Biophys. J. 26:115-32
    • (1979) Biophys. J. , vol.26 , pp. 115-132
    • Waugh, R.1    Evans, E.A.2
  • 140
  • 142
    • 79955373189 scopus 로고    scopus 로고
    • Optimal low-dispersion low-dissipationLBMschemes for computational aeroacoustics
    • Xu H, Sagaut P. 2011. Optimal low-dispersion low-dissipationLBMschemes for computational aeroacoustics. J. Comput. Phys. 230:5353-82
    • (2011) J. Comput. Phys. , vol.230 , pp. 5353-5382
    • Xu, H.1    Sagaut, P.2
  • 143
    • 41249083995 scopus 로고    scopus 로고
    • The immersed interface method for simulating prescribed motion of rigid objects in an incompressible viscous flow
    • Xu S. 2008. The immersed interface method for simulating prescribed motion of rigid objects in an incompressible viscous flow. J. Comput. Phys. 227:5045-71
    • (2008) J. Comput. Phys. , vol.227 , pp. 5045-5071
    • Xu, S.1
  • 145
    • 80051613639 scopus 로고    scopus 로고
    • Phase diagram and breathing dynamics of a single red blood cell and a biconcave capsule in dilute shear flow
    • Yazdani AZK, Bagchi P. 2011. Phase diagram and breathing dynamics of a single red blood cell and a biconcave capsule in dilute shear flow. Phys. Rev. E 84:236314
    • (2011) Phys. Rev. , vol.E84 , pp. 236314
    • Yazdani, A.Z.K.1    Bagchi, P.2
  • 146
    • 55949117789 scopus 로고    scopus 로고
    • The nonlinear mechanical response of the red blood cell
    • Yoon YZY, Kotar J, Yoon G, Cicuta P. 2008. The nonlinear mechanical response of the red blood cell. Phys. Biol. 5:036007
    • (2008) Phys. Biol. , vol.5 , pp. 036007
    • Yoon, Y.Z.Y.1    Kotar, J.2    Yoon, G.3    Cicuta, P.4
  • 147
    • 0016507593 scopus 로고
    • Stokes flow past a particle of arbitrary shape: A numerical method of solution
    • Youngren GK, Acrivos A. 1975. Stokes flow past a particle of arbitrary shape: A numerical method of solution. J. Fluid Mech. 69:377-403
    • (1975) J. Fluid Mech. , vol.69 , pp. 377-403
    • Youngren, G.K.1    Acrivos, A.2
  • 148
    • 78649442741 scopus 로고    scopus 로고
    • A spectral boundary integral method for flowing blood cells
    • Zhao H, Isfahani AHG, Olson L, Freund JB. 2010. A spectral boundary integral method for flowing blood cells. J. Comput. Phys. 229:3726-44
    • (2010) J. Comput. Phys. , vol.229 , pp. 3726-3744
    • Zhao, H.1    Isfahani, A.H.G.2    Olson, L.3    Freund, J.B.4
  • 149
    • 84863011603 scopus 로고    scopus 로고
    • Shear-induced particle migration and margination in a cellular suspension
    • Zhao H, Shaqfeh ESG, Narsimhan V. 2012. Shear-induced particle migration and margination in a cellular suspension. Phys. Fluids 24:011902
    • (2012) Phys. Fluids , vol.24 , pp. 011902
    • Zhao, H.1    Shaqfeh, E.S.G.2    Narsimhan, V.3
  • 150
    • 0019999150 scopus 로고
    • Stokes flow through periodic arrays of spheres
    • Zick AA, Homsy GM. 1982. Stokes flow through periodic arrays of spheres. J. Fluid Mech. 115:13-26
    • (1982) J. Fluid Mech. , vol.115 , pp. 13-26
    • Zick, A.A.1    Homsy, G.M.2
  • 151
    • 0034687899 scopus 로고    scopus 로고
    • An efficient algorithm for hydrodynamical interaction of many deformable drops
    • Zinchenko AZ, Davis RH. 2000. An efficient algorithm for hydrodynamical interaction of many deformable drops. J. Comput. Phys. 157:539-87
    • (2000) J. Comput. Phys. , vol.157 , pp. 539-587
    • Zinchenko, A.Z.1    Davis, R.H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.