메뉴 건너뛰기




Volumn 5, Issue , 2014, Pages

A primer on predictive models

Author keywords

[No Author keywords available]

Indexed keywords

ARTICLE; CALIBRATION; HUMAN; LEARNING ALGORITHM; LIVER CELL CARCINOMA; LIVER CIRRHOSIS; MACHINE LEARNING; MEDICAL RESEARCH; METHODOLOGY; PREDICTION; PREDICTIVE MODEL; PRIORITY JOURNAL; RECEIVER OPERATING CHARACTERISTIC; STATISTICAL MODEL; VALIDATION PROCESS; ARTIFICIAL INTELLIGENCE; CLINICAL PRACTICE; EXPLANATORY RESEARCH; HOSPITAL READMISSION; NONBIOLOGICAL MODEL; OUTCOME ASSESSMENT; PERFORMANCE MEASUREMENT SYSTEM; PREDICTION RESEARCH; PROCESS DEVELOPMENT; REVIEW; RISK ASSESSMENT;

EID: 84891759965     PISSN: None     EISSN: 2155384X     Source Type: Journal    
DOI: 10.1038/ctg.2013.19     Document Type: Article
Times cited : (103)

References (29)
  • 1
    • 52949100612 scopus 로고    scopus 로고
    • Validation, updating and impact of clinical prediction rules: A review
    • Toll DB, Janssen KJ, Vergouwe Y et al. Validation, updating and impact of clinical prediction rules: a review. J Clin Epidemiol 2008; 61: 1085-1094.
    • (2008) J Clin Epidemiol , vol.61 , pp. 1085-1094
    • Toll, D.B.1    Janssen, K.J.2    Vergouwe, Y.3
  • 2
    • 75349094042 scopus 로고    scopus 로고
    • Algorithms outperform metabolite tests in predicting response of patients with inflammatory bowel disease to thiopurines
    • Waljee AK, Joyce JC, Wang SJ et al. Algorithms outperform metabolite tests in predicting response of patients with inflammatory bowel disease to thiopurines. Clin Gastroenterol Hepatol 2010; 8: 143-150.
    • (2010) Clin Gastroenterol Hepatol , vol.8 , pp. 143-150
    • Waljee, A.K.1    Joyce, J.C.2    Wang, S.J.3
  • 3
    • 84887246574 scopus 로고    scopus 로고
    • Machine learning algorithms outperform conventional regression models in identifying risk factors for hepatocellular carcinoma in patients with cirrhosis
    • Singal AG, Mukherjee A, Higgins PD et al. Machine learning algorithms outperform conventional regression models in identifying risk factors for hepatocellular carcinoma in patients with cirrhosis. Am J Gastroenterol 2013; 108: 1723-1730.
    • (2013) Am J Gastroenterol , vol.108 , pp. 1723-1730
    • Singal, A.G.1    Mukherjee, A.2    Higgins, P.D.3
  • 4
    • 84866148504 scopus 로고    scopus 로고
    • Failure rates in the hepatocellular carcinoma surveillance process
    • Singal AG, Yopp AC, Gupta S et al. Failure rates in the hepatocellular carcinoma surveillance process. Cancer Prev Res (Phila) 2012; 5: 1124-1130.
    • (2012) Cancer Prev Res (Phila) , vol.5 , pp. 1124-1130
    • Singal, A.G.1    Yopp, A.C.2    Gupta, S.3
  • 5
    • 84884353768 scopus 로고    scopus 로고
    • An automated model using electronic medical record data to identify patients with cirrhosis at high risk for readmission
    • Singal AG, Rahimi RS, Clark C et al. An automated model using electronic medical record data to identify patients with cirrhosis at high risk for readmission. Clinical Gastroenterol and Hepatol 2013; 11: 1335-1341.
    • (2013) Clinical Gastroenterol and Hepatol , vol.11 , pp. 1335-1341
    • Singal, A.G.1    Rahimi, R.S.2    Clark, C.3
  • 6
    • 67650022801 scopus 로고    scopus 로고
    • Prognosis and prognostic research: What, why and how?
    • Moons KG, Royston P, Vergouwe Y et al. Prognosis and prognostic research: what, why, and how? BMJ 2009; 338: b375.
    • (2009) BMJ , vol.338
    • Moons, K.G.1    Royston, P.2    Vergouwe, Y.3
  • 7
    • 76249132458 scopus 로고    scopus 로고
    • Ten steps towards improving prognosis research
    • Hemingway H, Riley RD, Altman DG. Ten steps towards improving prognosis research. BMJ 2009; 339: b4184.
    • (2009) BMJ , vol.339
    • Hemingway, H.1    Riley, R.D.2    Altman, D.G.3
  • 8
    • 77953215733 scopus 로고    scopus 로고
    • Machine learning in medicine: A primer for physicians
    • Waljee AK, Higgins PD. Machine learning in medicine: a primer for physicians. Am J Gastroenterol 2010; 105: 1224-1226.
    • (2010) Am J Gastroenterol , vol.105 , pp. 1224-1226
    • Waljee, A.K.1    Higgins, P.D.2
  • 9
    • 78650077217 scopus 로고    scopus 로고
    • Real-time tool to display the predicted disease course and treatment response for children with Crohn's disease
    • Siegel CA, Siegel LS, Hyams JS et al. Real-time tool to display the predicted disease course and treatment response for children with Crohn's disease. Inflamm Bowel Dis 2011; 17: 30-38.
    • (2011) Inflamm Bowel Dis , vol.17 , pp. 30-38
    • Siegel, C.A.1    Siegel, L.S.2    Hyams, J.S.3
  • 10
    • 84863304598 scopus 로고    scopus 로고
    • Core Team R Foundation for Statistical Computing, Vienna, Austria ISBN 3-900051-07-0
    • Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2013, ISBN 3-900051-07-0, http://www.R-project.org/.
    • (2013) R: A Language and Environment for Statistical Computing
  • 11
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • DOI 10.1023/A:1010933404324
    • Breiman L. Random forests. Machine Learning 2001; 45: 5-32. (Pubitemid 32933532)
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 12
    • 0345040873 scopus 로고    scopus 로고
    • Classification and regression by random Forest
    • Liaw A, Wiener M. Classification and regression by random Forest. R News 2002; 2: 18-22.
    • (2002) R News , vol.2 , pp. 18-22
    • Liaw, A.1    Wiener, M.2
  • 13
    • 67650045441 scopus 로고    scopus 로고
    • Prognosis and prognostic research: Developing a prognostic model
    • Royston P, Moons KG, Altman DG et al. Prognosis and prognostic research: developing a prognostic model. BMJ 2009; 338: b604.
    • (2009) BMJ , vol.338
    • Royston, P.1    Moons, K.G.2    Altman, D.G.3
  • 14
    • 0024503860 scopus 로고
    • Modeling and variable selection in epidemiologic analysis
    • Greenland S. Modeling and variable selection in epidemiologic analysis. Am J Public Health 1989; 79: 340-349. (Pubitemid 19077878)
    • (1989) American Journal of Public Health , vol.79 , Issue.3 , pp. 340-349
    • Greenland, S.1
  • 15
    • 84866615945 scopus 로고    scopus 로고
    • Missing data in clinical studies: Issues and methods
    • Ibrahim JG, Chu H, Chen MH. Missing data in clinical studies: issues and methods. J Clin Oncol 2012; 30: 3297-3303.
    • (2012) J Clin Oncol , vol.30 , pp. 3297-3303
    • Ibrahim, J.G.1    Chu, H.2    Chen, M.H.3
  • 16
    • 84862748393 scopus 로고    scopus 로고
    • Do the methods used to analyse missing data really matter? An examination of data from an observational study of Intermediate Care patients
    • Kaambwa B, Bryan S, Billingham L. Do the methods used to analyse missing data really matter? An examination of data from an observational study of Intermediate Care patients. BMC Res Notes 2012; 5: 330.
    • (2012) BMC Res Notes , vol.5 , pp. 330
    • Kaambwa, B.1    Bryan, S.2    Billingham, L.3
  • 17
    • 84884547259 scopus 로고    scopus 로고
    • Comparison of modern imputation methods for missing laboratory data inmedicine
    • pii doi:10.1136/bmjopen-2013-002847
    • Waljee A, Mukherjee A, Singal A et al. Comparison of modern imputation methods for missing laboratory data inmedicine. BMJOpen 2013; 3: pii: e002847; doi:10.1136/bmjopen-2013-002847.
    • (2013) BMJOpen , vol.3
    • Waljee, A.1    Mukherjee, A.2    Singal, A.3
  • 18
    • 67650082402 scopus 로고    scopus 로고
    • Prognosis and prognostic research: Validating a prognostic model
    • Altman DG, Vergouwe Y, Royston P et al. Prognosis and prognostic research: validating a prognostic model. BMJ 2009; 338: b605.
    • (2009) BMJ , vol.338
    • Altman, D.G.1    Vergouwe, Y.2    Royston, P.3
  • 20
    • 73849094087 scopus 로고    scopus 로고
    • Assessing the performance of prediction models: A framework for traditional and novel measures
    • Steyerberg EW, Vickers AJ, Cook NR et al. Assessing the performance of prediction models: a framework for traditional and novel measures. Epidemiology 2010; 21: 128-138.
    • (2010) Epidemiology , vol.21 , pp. 128-138
    • Steyerberg, E.W.1    Vickers, A.J.2    Cook, N.R.3
  • 21
    • 54349088695 scopus 로고    scopus 로고
    • The performance of risk prediction models
    • Gerds TA, Cai T, Schumacher M. The performance of risk prediction models. Biom J 2008; 50: 457-479.
    • (2008) Biom J , vol.50 , pp. 457-479
    • Gerds, T.A.1    Cai, T.2    Schumacher, M.3
  • 22
    • 70450231574 scopus 로고    scopus 로고
    • Predictive model assessment for count data
    • Czado C, Gneiting T, Held L. Predictive model assessment for count data. Biometrics 2009; 65: 1254-1261.
    • (2009) Biometrics , vol.65 , pp. 1254-1261
    • Czado, C.1    Gneiting, T.2    Held, L.3
  • 23
    • 0031006441 scopus 로고    scopus 로고
    • A comparison of goodness-of-fit tests for the logistic regression model
    • DOI 10.1002/(SICI)1097-0258(19970515) 16:9<965::AID-SIM509>3.0. CO;2-O
    • Hosmer DW, Hosmer T, Le Cessie S et al. A comparison of goodness-of-fit tests for the logistic regression model. Stat Med 1997; 16: 965-980. (Pubitemid 27198985)
    • (1997) Statistics in Medicine , vol.16 , Issue.9 , pp. 965-980
    • Hosmer, D.W.1    Hosmer, T.2    Le Cessie, S.3    Lemeshow, S.4
  • 24
    • 15044357936 scopus 로고    scopus 로고
    • Survival model predictive accuracy and ROC curves
    • DOI 10.1111/j.0006-341X.2005.030814.x
    • Heagerty PJ, Zheng Y. Survival model predictive accuracy and ROC curves. Biometrics 2005; 61: 92-105. (Pubitemid 40380968)
    • (2005) Biometrics , vol.61 , Issue.1 , pp. 92-105
    • Heagerty, P.J.1    Zheng, Y.2
  • 25
    • 33847109797 scopus 로고    scopus 로고
    • Use and misuse of the receiver operating characteristic curve in risk prediction
    • DOI 10.1161/CIRCULATIONAHA.106.672402, PII 0000301720070220000018
    • Cook NR. Use and misuse of the receiver operating characteristic curve in risk prediction. Circulation 2007; 115: 928-935. (Pubitemid 46294733)
    • (2007) Circulation , vol.115 , Issue.7 , pp. 928-935
    • Cook, N.R.1
  • 26
    • 84855232027 scopus 로고    scopus 로고
    • Novel metrics for evaluating improvement in discrimination: Net reclassification and integrated discrimination improvement for normal variables and nested models
    • Pencina MJ, D'Agostino RB, Demler OV. Novel metrics for evaluating improvement in discrimination: net reclassification and integrated discrimination improvement for normal variables and nested models. Stat Med 2012; 31: 101-113.
    • (2012) Stat Med , vol.31 , pp. 101-113
    • Pencina, M.J.1    D'Agostino, R.B.2    Demler, O.V.3
  • 27
    • 67650089602 scopus 로고    scopus 로고
    • Prognosis and prognostic research: Application and impact of prognostic models in clinical practice
    • Moons KG, Altman DG, Vergouwe Y et al. Prognosis and prognostic research: application and impact of prognostic models in clinical practice. BMJ 2009; 338: b606.
    • (2009) BMJ , vol.338
    • Moons, K.G.1    Altman, D.G.2    Vergouwe, Y.3
  • 28
    • 33644855006 scopus 로고    scopus 로고
    • Translating clinical research into clinical practice: Impact of using prediction rules to make decisions
    • Reilly BM, Evans AT. Translating clinical research into clinical practice: impact of using prediction rules to make decisions. Ann Intern Med 2006; 144: 201-209. (Pubitemid 46780691)
    • (2006) Annals of Internal Medicine , vol.144 , Issue.3 , pp. 201-209
    • Reilly, B.M.1    Evans, A.T.2
  • 29
    • 83155184568 scopus 로고    scopus 로고
    • Affordable Care Act: Predictive modeling challenges and opportunities for case management
    • quiz 22-23
    • Meek JA. Affordable Care Act: predictive modeling challenges and opportunities for case management. Prof Case Manag 2012; 17: 15-21; quiz 22-23.
    • (2012) Prof Case Manag , vol.17 , pp. 15-21
    • Meek, J.A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.