메뉴 건너뛰기




Volumn 454, Issue , 2014, Pages 220-232

Enhanced proton conduction of chitosan membrane enabled by halloysite nanotubes bearing sulfonate polyelectrolyte brushes

Author keywords

Chitosan; Halloysite nanotubes; Nanohybrid membrane; Proton transfer; Sulfonate polyelectrolyte brushes

Indexed keywords

DISTILLATION-PRECIPITATION POLYMERIZATION; ELECTROSTATIC ATTRACTIONS; FIELD EMISSION SCANNING ELECTRON MICROSCOPES; FOURIER TRANSFORM INFRA REDS; HALLOYSITE NANOTUBES; NANOHYBRID MEMBRANES; POLYELECTROLYTE BRUSHES; THERMAL AND MECHANICAL STABILITIES;

EID: 84891658008     PISSN: 03767388     EISSN: 18733123     Source Type: Journal    
DOI: 10.1016/j.memsci.2013.12.005     Document Type: Article
Times cited : (144)

References (73)
  • 1
    • 0035891321 scopus 로고    scopus 로고
    • Materials for fuel-cell technologies
    • Steele B.C.H., Heinzel A. Materials for fuel-cell technologies. Nature 2001, 414:345-352.
    • (2001) Nature , vol.414 , pp. 345-352
    • Steele, B.C.H.1    Heinzel, A.2
  • 2
    • 34547900649 scopus 로고    scopus 로고
    • Poly(vinylpyrrolidone)-modified graphite carbon nanofibers as promising supports for PtRu catalysts in direct methanol fuel cells
    • Hsin Y.L., Hwang K.C., Yeh C.-T. Poly(vinylpyrrolidone)-modified graphite carbon nanofibers as promising supports for PtRu catalysts in direct methanol fuel cells. J. Am. Chem. Soc 2007, 129:9999-10010.
    • (2007) J. Am. Chem. Soc , vol.129 , pp. 9999-10010
    • Hsin, Y.L.1    Hwang, K.C.2    Yeh, C.-T.3
  • 3
    • 33646580367 scopus 로고    scopus 로고
    • Layer-by-layer self-assembly of composite polyelectrolyte-nafion membranes for direct methanol fuel cells
    • Jiang S.P., Liu Z., Tian Z.Q. Layer-by-layer self-assembly of composite polyelectrolyte-nafion membranes for direct methanol fuel cells. Adv. Mater. 2006, 18:1068-1072.
    • (2006) Adv. Mater. , vol.18 , pp. 1068-1072
    • Jiang, S.P.1    Liu, Z.2    Tian, Z.Q.3
  • 4
    • 0042159991 scopus 로고    scopus 로고
    • Polymer electrolyte membranes with a pore-filling structure for a direct methanol fuel cell
    • Yamaguchi T., Miyata F., Nakao S. Polymer electrolyte membranes with a pore-filling structure for a direct methanol fuel cell. Adv. Mater. 2003, 15:1198-1201.
    • (2003) Adv. Mater. , vol.15 , pp. 1198-1201
    • Yamaguchi, T.1    Miyata, F.2    Nakao, S.3
  • 5
    • 33748032725 scopus 로고    scopus 로고
    • Chitosan-poly(vinyl pyrrolidone) blends as membranes for direct methanol fuel cell applications
    • Smitha B., Sridhar S., Khan A.A. Chitosan-poly(vinyl pyrrolidone) blends as membranes for direct methanol fuel cell applications. J. Power Sources 2006, 159:846-854.
    • (2006) J. Power Sources , vol.159 , pp. 846-854
    • Smitha, B.1    Sridhar, S.2    Khan, A.A.3
  • 7
    • 39149089641 scopus 로고    scopus 로고
    • Effect of zeolites on chitosan/zeolite hybrid membranes for direct methanol fuel cell
    • Wang J., Zheng X., Wu H., Zheng B., Jiang Z., Hao X., Wang B. Effect of zeolites on chitosan/zeolite hybrid membranes for direct methanol fuel cell. J. Power Sources 2008, 178:9-19.
    • (2008) J. Power Sources , vol.178 , pp. 9-19
    • Wang, J.1    Zheng, X.2    Wu, H.3    Zheng, B.4    Jiang, Z.5    Hao, X.6    Wang, B.7
  • 8
    • 4544225951 scopus 로고    scopus 로고
    • A biopolymer composite material as an anhydrous proton-conducting membrane
    • Yamada M., Honma I. A biopolymer composite material as an anhydrous proton-conducting membrane. Angew. Chem. Int. Ed. 2004, 43:3688-3691.
    • (2004) Angew. Chem. Int. Ed. , vol.43 , pp. 3688-3691
    • Yamada, M.1    Honma, I.2
  • 9
    • 84862557140 scopus 로고    scopus 로고
    • Water soluble polymers as proton exchange membranes for fuel cells
    • Ye Y.-S., Rick J., Hwang B.-J. Water soluble polymers as proton exchange membranes for fuel cells. Polymers 2012, 4:913-963.
    • (2012) Polymers , vol.4 , pp. 913-963
    • Ye, Y.-S.1    Rick, J.2    Hwang, B.-J.3
  • 10
    • 41949136606 scopus 로고    scopus 로고
    • Modification of sulfonated poly(ether ether ketone) proton exchange membrane for reducing methanol crossover
    • Zhong S., Cui X., Fu T., Na H. Modification of sulfonated poly(ether ether ketone) proton exchange membrane for reducing methanol crossover. J. Power Sources 2008, 180:23-28.
    • (2008) J. Power Sources , vol.180 , pp. 23-28
    • Zhong, S.1    Cui, X.2    Fu, T.3    Na, H.4
  • 11
    • 0000739602 scopus 로고
    • Methanol-water association and its effect on solute retention in liquid chromatography
    • Katz E.D., Lochmuller C.H., Scott R.P.W. Methanol-water association and its effect on solute retention in liquid chromatography. Anal. Chem. 1989, 61:349-355.
    • (1989) Anal. Chem. , vol.61 , pp. 349-355
    • Katz, E.D.1    Lochmuller, C.H.2    Scott, R.P.W.3
  • 12
    • 0033083505 scopus 로고    scopus 로고
    • Detection and identification of a methanol-water complex by factor analysis of infrared spectra
    • Zhao Z., Malinowski E.R. Detection and identification of a methanol-water complex by factor analysis of infrared spectra. Anal. Chem 1999, 71:602-608.
    • (1999) Anal. Chem , vol.71 , pp. 602-608
    • Zhao, Z.1    Malinowski, E.R.2
  • 13
    • 1842425198 scopus 로고    scopus 로고
    • Polyelectrolyte complexes of chitosan and poly(acrylic acid) as proton exchange membranes for fuel cells
    • Smitha B., Sridhar S., Khan A.A. Polyelectrolyte complexes of chitosan and poly(acrylic acid) as proton exchange membranes for fuel cells. Macromolecules 2004, 37:2233-2239.
    • (2004) Macromolecules , vol.37 , pp. 2233-2239
    • Smitha, B.1    Sridhar, S.2    Khan, A.A.3
  • 14
    • 58149161514 scopus 로고    scopus 로고
    • Functionalized organic-inorganic nanostructured N-p-carboxy benzyl chitosan-silica-PVA hybrid polyelectrolyte complex as proton exchange membrane for DMFC applications
    • Tripathi B.P., Shahi V.K. Functionalized organic-inorganic nanostructured N-p-carboxy benzyl chitosan-silica-PVA hybrid polyelectrolyte complex as proton exchange membrane for DMFC applications. J. Phys. Chem. B 2008, 112:15678-15690.
    • (2008) J. Phys. Chem. B , vol.112 , pp. 15678-15690
    • Tripathi, B.P.1    Shahi, V.K.2
  • 15
    • 84858441475 scopus 로고    scopus 로고
    • Chitosan-polyvinyl alcohol-sulfonated polyethersulfone mixed-matrix membranes as methanol-barrier electrolytes for DMFCs
    • Meenakshi S., Bhat S.D., Sahu A.K., Sridhar P., Pitchumani S., Shukla A.K. Chitosan-polyvinyl alcohol-sulfonated polyethersulfone mixed-matrix membranes as methanol-barrier electrolytes for DMFCs. J. Appl. Polym. Sci. 2012, 124:E73-E82.
    • (2012) J. Appl. Polym. Sci. , vol.124
    • Meenakshi, S.1    Bhat, S.D.2    Sahu, A.K.3    Sridhar, P.4    Pitchumani, S.5    Shukla, A.K.6
  • 16
    • 76349097782 scopus 로고    scopus 로고
    • Anion-exchange membranes composed of quaternized-chitosan derivatives for alkaline fuel cells
    • Wan Y., Peppley B., Creber K.A.M., Bui V.T. Anion-exchange membranes composed of quaternized-chitosan derivatives for alkaline fuel cells. J. Power Sources 2010, 195:3785-3793.
    • (2010) J. Power Sources , vol.195 , pp. 3785-3793
    • Wan, Y.1    Peppley, B.2    Creber, K.A.M.3    Bui, V.T.4
  • 17
    • 33847031436 scopus 로고    scopus 로고
    • Study of basic biopolymer as proton membrane for fuel cell systems
    • Ramírez-Salgado J. Study of basic biopolymer as proton membrane for fuel cell systems. Electrochim. Acta 2007, 52:3766-3778.
    • (2007) Electrochim. Acta , vol.52 , pp. 3766-3778
    • Ramírez-Salgado, J.1
  • 18
    • 0037449624 scopus 로고    scopus 로고
    • Ionic conductivity of chitosan membranes
    • Wan Y., Greber K.A.M., Peppley B., Bui V.T. Ionic conductivity of chitosan membranes. Polymer 2003, 44:1057-1065.
    • (2003) Polymer , vol.44 , pp. 1057-1065
    • Wan, Y.1    Greber, K.A.M.2    Peppley, B.3    Bui, V.T.4
  • 19
    • 77950646366 scopus 로고    scopus 로고
    • The structure and electric characters of proton-conducting chitosan membranes with various ammonium salts as complexant
    • Du J.F., Bai Y., Chu W.Y., Qiao L.J. The structure and electric characters of proton-conducting chitosan membranes with various ammonium salts as complexant. J. Polym. Sci., Part B: Polym. Phys. 2010, 48:880-885.
    • (2010) J. Polym. Sci., Part B: Polym. Phys. , vol.48 , pp. 880-885
    • Du, J.F.1    Bai, Y.2    Chu, W.Y.3    Qiao, L.J.4
  • 20
    • 80052797928 scopus 로고    scopus 로고
    • Characterization and fuel cell performance analysis of polyvinylalcohol-mordenite mixed-matrix membranes for direct methanol fuel cell use
    • Üctuǧ F.G., Holmes S.M. Characterization and fuel cell performance analysis of polyvinylalcohol-mordenite mixed-matrix membranes for direct methanol fuel cell use. Electrochim. Acta 2011, 56:8446-8456.
    • (2011) Electrochim. Acta , vol.56 , pp. 8446-8456
    • Üctuǧ, F.G.1    Holmes, S.M.2
  • 21
    • 65649123812 scopus 로고    scopus 로고
    • Alternatively chitosan sulfate blending membrane as methanol-blocking polymer electrolyte membrane for direct methanol fuel cell
    • Xiang Y., Yang M., Guo Z., Cui Z. Alternatively chitosan sulfate blending membrane as methanol-blocking polymer electrolyte membrane for direct methanol fuel cell. J. Membr. Sci. 2009, 337:318-323.
    • (2009) J. Membr. Sci. , vol.337 , pp. 318-323
    • Xiang, Y.1    Yang, M.2    Guo, Z.3    Cui, Z.4
  • 22
    • 17444364850 scopus 로고    scopus 로고
    • Anhydrous proton conductive membrane consisting of chitosan
    • Yamada M., Honma I. Anhydrous proton conductive membrane consisting of chitosan. Electrochim. Acta 2005, 50:2837-2841.
    • (2005) Electrochim. Acta , vol.50 , pp. 2837-2841
    • Yamada, M.1    Honma, I.2
  • 23
    • 79955476043 scopus 로고    scopus 로고
    • Organic-inorganic nanocomposite polymer electrolyte membranes for fuel cell applications
    • Tripathi B.P., Shahi V.K. Organic-inorganic nanocomposite polymer electrolyte membranes for fuel cell applications. Prog. Polym. Sci. 2011, 36:945-979.
    • (2011) Prog. Polym. Sci. , vol.36 , pp. 945-979
    • Tripathi, B.P.1    Shahi, V.K.2
  • 25
    • 71549117982 scopus 로고    scopus 로고
    • Simultaneously enhanced methanol barrier and proton conductive properties of phosphorylated titanate nanotubes embedded nanocomposite membranes
    • Wang J., Zhao Y., Hou W., Geng J., Xiao L., Wu H., Jiang Z. Simultaneously enhanced methanol barrier and proton conductive properties of phosphorylated titanate nanotubes embedded nanocomposite membranes. J. Power Sources 2010, 195:1015-1023.
    • (2010) J. Power Sources , vol.195 , pp. 1015-1023
    • Wang, J.1    Zhao, Y.2    Hou, W.3    Geng, J.4    Xiao, L.5    Wu, H.6    Jiang, Z.7
  • 28
    • 67649283556 scopus 로고    scopus 로고
    • Composite fuel cell membranes based on an inert polymer matrix and proton-conducting hybrid silica particles
    • Niepceron F., Lafitte B., Galiano H., Bigarré J., Nicol E., Tassin J.-F. Composite fuel cell membranes based on an inert polymer matrix and proton-conducting hybrid silica particles. J. Membr. Sci 2009, 338:100-110.
    • (2009) J. Membr. Sci , vol.338 , pp. 100-110
    • Niepceron, F.1    Lafitte, B.2    Galiano, H.3    Bigarré, J.4    Nicol, E.5    Tassin, J.-F.6
  • 29
    • 34548487762 scopus 로고    scopus 로고
    • Facile synthesis of silica/polymer hybrid microspheres and hollow polymer microspheres
    • Liu G., Zhang H., Yang X., Wang Y. Facile synthesis of silica/polymer hybrid microspheres and hollow polymer microspheres. Polymer 2007, 48:5896-5904.
    • (2007) Polymer , vol.48 , pp. 5896-5904
    • Liu, G.1    Zhang, H.2    Yang, X.3    Wang, Y.4
  • 31
    • 79959930071 scopus 로고    scopus 로고
    • Synthesis and characterization of carbon nanotubes/poly vinyl alcohol nanocomposite membranes for dehydration of isopropanol
    • Shirazi Y., Tofighy M.A., Mohammadi T. Synthesis and characterization of carbon nanotubes/poly vinyl alcohol nanocomposite membranes for dehydration of isopropanol. J. Membr. Sci. 2011, 378:551-561.
    • (2011) J. Membr. Sci. , vol.378 , pp. 551-561
    • Shirazi, Y.1    Tofighy, M.A.2    Mohammadi, T.3
  • 32
    • 84870163223 scopus 로고    scopus 로고
    • Novel approach for the development of pervaporation membranes using sodium alginate and chitosan-wrapped multiwalled carbon nanotubes for the dehydration of isopropanol
    • Sajjan A.M., Kumar B.K.J., Kittur A.A., Kariduraganavar M.Y. Novel approach for the development of pervaporation membranes using sodium alginate and chitosan-wrapped multiwalled carbon nanotubes for the dehydration of isopropanol. J. Membr. Sci. 2013, 425-426:77-88.
    • (2013) J. Membr. Sci. , pp. 77-88
    • Sajjan, A.M.1    Kumar, B.K.J.2    Kittur, A.A.3    Kariduraganavar, M.Y.4
  • 33
    • 79955833386 scopus 로고    scopus 로고
    • Mixed matrix membrane incorporated with large pore size halloysite nanotubes (HNT) as filler for gas separation: experimental
    • Hashemifard S.A., Ismail A.F., Matsuura T. Mixed matrix membrane incorporated with large pore size halloysite nanotubes (HNT) as filler for gas separation: experimental. J. Colloid Interface Sci 2011, 359:359-370.
    • (2011) J. Colloid Interface Sci , vol.359 , pp. 359-370
    • Hashemifard, S.A.1    Ismail, A.F.2    Matsuura, T.3
  • 34
    • 34247630592 scopus 로고    scopus 로고
    • Proton exchange membranes modified with sulfonated silica nanoparticles for direct methanol fuel cells
    • Su Y.H., Liu Y.L., Sun Y.M., Lai J.Y., Wang D.M., Gao Y., Liu B., Guiver M.D. Proton exchange membranes modified with sulfonated silica nanoparticles for direct methanol fuel cells. J. Membr. Sci. 2007, 296:21-28.
    • (2007) J. Membr. Sci. , vol.296 , pp. 21-28
    • Su, Y.H.1    Liu, Y.L.2    Sun, Y.M.3    Lai, J.Y.4    Wang, D.M.5    Gao, Y.6    Liu, B.7    Guiver, M.D.8
  • 35
    • 33748032725 scopus 로고    scopus 로고
    • Chitosan-poly(vinyl pyrrolidone) blends as membranes for direct methanol fuel cell applications
    • Smitha B., Sridhar S., Khan A.A. Chitosan-poly(vinyl pyrrolidone) blends as membranes for direct methanol fuel cell applications. J. Power Sources 2006, 159:846-854.
    • (2006) J. Power Sources , vol.159 , pp. 846-854
    • Smitha, B.1    Sridhar, S.2    Khan, A.A.3
  • 36
    • 84860216513 scopus 로고    scopus 로고
    • High performance and eco-friendly chitosan hydrogel membrane electrolytes for direct borohydride fuel cells
    • Choudhury N.A., Ma J., Sahai Y. High performance and eco-friendly chitosan hydrogel membrane electrolytes for direct borohydride fuel cells. J. Power Sources 2012, 210:358-365.
    • (2012) J. Power Sources , vol.210 , pp. 358-365
    • Choudhury, N.A.1    Ma, J.2    Sahai, Y.3
  • 37
    • 79957537169 scopus 로고    scopus 로고
    • Investigation of salt addition and acid treatment effects on the transport properties of ionically cross-linked polyelectrolyte complex membranes based on chitosan and polyacrylic acid
    • Gümüşoǧlu T., Ari G.A., Deligöz H. Investigation of salt addition and acid treatment effects on the transport properties of ionically cross-linked polyelectrolyte complex membranes based on chitosan and polyacrylic acid. J. Membr. Sci. 2011, 376:25-34.
    • (2011) J. Membr. Sci. , vol.376 , pp. 25-34
    • Gümüşoǧlu, T.1    Ari, G.A.2    Deligöz, H.3
  • 38
    • 4344595116 scopus 로고    scopus 로고
    • Synthesis and characterization of cross-linked chitosan membranes for application as alternative proton exchange membrane materials in fuel cells
    • Mukoma P., Jooste B.R., Vosloo H.C.M. Synthesis and characterization of cross-linked chitosan membranes for application as alternative proton exchange membrane materials in fuel cells. J. Power Sources 2004, 136:16-23.
    • (2004) J. Power Sources , vol.136 , pp. 16-23
    • Mukoma, P.1    Jooste, B.R.2    Vosloo, H.C.M.3
  • 39
    • 84875240264 scopus 로고    scopus 로고
    • Characterization and performance study on chitosan-functionalized multi walled carbon nano tube as separator in microbial fuel cell
    • Venkatesan P.N., Dharmalingam S. Characterization and performance study on chitosan-functionalized multi walled carbon nano tube as separator in microbial fuel cell. J. Membr. Sci. 2013, 435:92-98.
    • (2013) J. Membr. Sci. , vol.435 , pp. 92-98
    • Venkatesan, P.N.1    Dharmalingam, S.2
  • 40
    • 84863021026 scopus 로고    scopus 로고
    • Preparation and characterization of chitosan-carbon nanotube scaffolds for bone tissue engineering
    • Venkatesan J., Ryu B., Sudha P.N., Kim S.-K. Preparation and characterization of chitosan-carbon nanotube scaffolds for bone tissue engineering. Int. J. Biol. Macromol. 2012, 50:393-402.
    • (2012) Int. J. Biol. Macromol. , vol.50 , pp. 393-402
    • Venkatesan, J.1    Ryu, B.2    Sudha, P.N.3    Kim, S.-K.4
  • 41
    • 84869861690 scopus 로고    scopus 로고
    • Chitosan biopolymer for fuel cell applications
    • Ma J., Sahai Y. Chitosan biopolymer for fuel cell applications. Carbohydr. Polym. 2013, 92:955-975.
    • (2013) Carbohydr. Polym. , vol.92 , pp. 955-975
    • Ma, J.1    Sahai, Y.2
  • 42
    • 75949105419 scopus 로고    scopus 로고
    • Chitosan/titanate nanotube hybrid membrane with low methanol crossover for direct methanol fuel cells
    • Geng J., Jiang Z., Wang J., Shi Y., Yang D., Xiao L. Chitosan/titanate nanotube hybrid membrane with low methanol crossover for direct methanol fuel cells. Chem. Eng. Technol. 2010, 33:244-250.
    • (2010) Chem. Eng. Technol. , vol.33 , pp. 244-250
    • Geng, J.1    Jiang, Z.2    Wang, J.3    Shi, Y.4    Yang, D.5    Xiao, L.6
  • 44
    • 84868571131 scopus 로고    scopus 로고
    • Enhancement of proton conduction at low humidity by incorporating imidazole microcapsules into polymer electrolyte membranes
    • Wang J., Yue X., Zhang Z., Yang Z., Li Y., Zhang H., Yang X., Wu H., Jiang Z. Enhancement of proton conduction at low humidity by incorporating imidazole microcapsules into polymer electrolyte membranes. Adv. Funct. Mater. 2012, 22:4539-4546.
    • (2012) Adv. Funct. Mater. , vol.22 , pp. 4539-4546
    • Wang, J.1    Yue, X.2    Zhang, Z.3    Yang, Z.4    Li, Y.5    Zhang, H.6    Yang, X.7    Wu, H.8    Jiang, Z.9
  • 45
    • 15844428958 scopus 로고    scopus 로고
    • Anhydrous proton conducting polymer electrolytes based on poly(vinylphosphonic acid)-heterocycle composite material
    • Yamada M., Honma I. Anhydrous proton conducting polymer electrolytes based on poly(vinylphosphonic acid)-heterocycle composite material. Polymer 2005, 46:2986-2992.
    • (2005) Polymer , vol.46 , pp. 2986-2992
    • Yamada, M.1    Honma, I.2
  • 47
    • 77957254611 scopus 로고    scopus 로고
    • Effects of acids and water addition on morphology and proton conduction in sol-gel derived acid-base polysiloxane
    • Zeng S., Hu S., Pan S., Wu G., Xu W. Effects of acids and water addition on morphology and proton conduction in sol-gel derived acid-base polysiloxane. Solid State Ionics 2010, 181:1408-1414.
    • (2010) Solid State Ionics , vol.181 , pp. 1408-1414
    • Zeng, S.1    Hu, S.2    Pan, S.3    Wu, G.4    Xu, W.5
  • 48
    • 44749089181 scopus 로고    scopus 로고
    • High DMFC performance output using modified acid-base polymer blend, Int
    • Pasupathi S., Ji S., Bladergroen B.J., Linkov V. High DMFC performance output using modified acid-base polymer blend, Int. J. Hydrog. Energy 2008, 33:3132-3136.
    • (2008) J. Hydrog. Energy , vol.33 , pp. 3132-3136
    • Pasupathi, S.1    Ji, S.2    Bladergroen, B.J.3    Linkov, V.4
  • 49
    • 54949124595 scopus 로고    scopus 로고
    • Proton conductivity enhancement by nanostructural control of poly(benzimidazole)-phosphoric acid adducts
    • Weber J., Kreuer K.-D., Maier J., Thomas A. Proton conductivity enhancement by nanostructural control of poly(benzimidazole)-phosphoric acid adducts. Adv. Mater. 2008, 20:2595-2598.
    • (2008) Adv. Mater. , vol.20 , pp. 2595-2598
    • Weber, J.1    Kreuer, K.-D.2    Maier, J.3    Thomas, A.4
  • 50
    • 33847633366 scopus 로고    scopus 로고
    • 4,5-Dicyano-1H-[1,2,3]-triazole as a proton transport facilitator for polymer electrolyte membrane fuel cells
    • Subbaraman R., Ghassemi H., Zawodzinski T.A. 4,5-Dicyano-1H-[1,2,3]-triazole as a proton transport facilitator for polymer electrolyte membrane fuel cells. J. Am. Chem. Soc. 2007, 129:2238-2239.
    • (2007) J. Am. Chem. Soc. , vol.129 , pp. 2238-2239
    • Subbaraman, R.1    Ghassemi, H.2    Zawodzinski, T.A.3
  • 51
    • 33845953164 scopus 로고    scopus 로고
    • Inorganic-organic hybrid membranes with anhydrous proton conduction prepared from 3-aminopropyltriethoxysilane and sulfuric acid by the sol-gel method
    • Tezuka T., Tadanaga K., Hayashi A., Tatsumisago M. Inorganic-organic hybrid membranes with anhydrous proton conduction prepared from 3-aminopropyltriethoxysilane and sulfuric acid by the sol-gel method. J. Am. Chem. Soc 2006, 128:16470-16471.
    • (2006) J. Am. Chem. Soc , vol.128 , pp. 16470-16471
    • Tezuka, T.1    Tadanaga, K.2    Hayashi, A.3    Tatsumisago, M.4
  • 52
    • 70450144501 scopus 로고    scopus 로고
    • Novel method for the preparation of ionically crosslinked sulfonated poly(arylene ether sulfone)/polybenzimidazole composite membranes via in situ polymerization
    • Feng S., Shang Y., Wang S., Xie X., Wang Y., Wang Y., Xu J. Novel method for the preparation of ionically crosslinked sulfonated poly(arylene ether sulfone)/polybenzimidazole composite membranes via in situ polymerization. J. Membr. Sci. 2010, 346:105-112.
    • (2010) J. Membr. Sci. , vol.346 , pp. 105-112
    • Feng, S.1    Shang, Y.2    Wang, S.3    Xie, X.4    Wang, Y.5    Wang, Y.6    Xu, J.7
  • 53
    • 33745714114 scopus 로고    scopus 로고
    • Acid-base polyimide blends for the application as electrolyte membranes for fuel cells
    • Jang W., Sundar S., Choi S., Shul Y.-G., Han H. Acid-base polyimide blends for the application as electrolyte membranes for fuel cells. J. Membr. Sci. 2006, 280:321-329.
    • (2006) J. Membr. Sci. , vol.280 , pp. 321-329
    • Jang, W.1    Sundar, S.2    Choi, S.3    Shul, Y.-G.4    Han, H.5
  • 54
    • 62649092956 scopus 로고    scopus 로고
    • Novel acid-base molecule-enhanced blends/copolymers for fuel cell applications
    • Guo M., Liu B., Liu Z., Wang L., Jiang Z. Novel acid-base molecule-enhanced blends/copolymers for fuel cell applications. J. Power Sources 2009, 189:894-901.
    • (2009) J. Power Sources , vol.189 , pp. 894-901
    • Guo, M.1    Liu, B.2    Liu, Z.3    Wang, L.4    Jiang, Z.5
  • 55
    • 84857372925 scopus 로고    scopus 로고
    • Phosphoric acid doped imidazolium polysulfone membranes for high temperature proton exchange membrane fuel cells
    • Yang J., Li Q., Jensen J.O., Pan C., Cleemann L.N., Bjerrum N.J., He R. Phosphoric acid doped imidazolium polysulfone membranes for high temperature proton exchange membrane fuel cells. J. Power Sources 2012, 205:114-121.
    • (2012) J. Power Sources , vol.205 , pp. 114-121
    • Yang, J.1    Li, Q.2    Jensen, J.O.3    Pan, C.4    Cleemann, L.N.5    Bjerrum, N.J.6    He, R.7
  • 56
    • 52149109501 scopus 로고    scopus 로고
    • Proton-conductive acid-base complex consisting of κ-carrageenan and 2-mercaptoimidazole
    • Fujishima M., Matsuo Y., Takatori H., Uchida K. Proton-conductive acid-base complex consisting of κ-carrageenan and 2-mercaptoimidazole. Electrochem. Commun. 2008, 10:1482-1485.
    • (2008) Electrochem. Commun. , vol.10 , pp. 1482-1485
    • Fujishima, M.1    Matsuo, Y.2    Takatori, H.3    Uchida, K.4
  • 57
    • 77949484966 scopus 로고    scopus 로고
    • High performance direct methanol fuel cells based on acid-base blend membranes containing benzotriazole
    • Li W., Manthiram A., Guiver M.D., Liu B. High performance direct methanol fuel cells based on acid-base blend membranes containing benzotriazole. Electrochem. Commun. 2010, 12:607-610.
    • (2010) Electrochem. Commun. , vol.12 , pp. 607-610
    • Li, W.1    Manthiram, A.2    Guiver, M.D.3    Liu, B.4
  • 58
    • 33746657241 scopus 로고    scopus 로고
    • Blend membranes based on sulfonated poly(ether ether ketone) and polysulfone bearing benzimidazole side groups for proton exchange membrane fuel cells
    • Fu Y., Manthiram A., Guiver M.D. Blend membranes based on sulfonated poly(ether ether ketone) and polysulfone bearing benzimidazole side groups for proton exchange membrane fuel cells. Electrochem. Commun. 2006, 8:1386-1390.
    • (2006) Electrochem. Commun. , vol.8 , pp. 1386-1390
    • Fu, Y.1    Manthiram, A.2    Guiver, M.D.3
  • 59
    • 60949114149 scopus 로고    scopus 로고
    • Studies on anhydrous proton conducting membranes based on imidazole derivatives and sulfonated polyimide
    • Pu H., Qin Y., Tang L., Teng X., Chang Z. Studies on anhydrous proton conducting membranes based on imidazole derivatives and sulfonated polyimide. Electrochim. Acta 2009, 54:2603-2609.
    • (2009) Electrochim. Acta , vol.54 , pp. 2603-2609
    • Pu, H.1    Qin, Y.2    Tang, L.3    Teng, X.4    Chang, Z.5
  • 60
    • 57949102010 scopus 로고    scopus 로고
    • Hybrid acid-base polymer membranes prepared for application in fuel cells
    • Wu D., Xu T., Wu L., Wu Y. Hybrid acid-base polymer membranes prepared for application in fuel cells. J. Power Sources 2009, 186:286-292.
    • (2009) J. Power Sources , vol.186 , pp. 286-292
    • Wu, D.1    Xu, T.2    Wu, L.3    Wu, Y.4
  • 61
    • 77952762693 scopus 로고    scopus 로고
    • High temperature proton exchange membranes based on triazoles attached onto SBA-15 type mesoporous silica
    • Park S.J., Lee D.H., Kang Y.S. High temperature proton exchange membranes based on triazoles attached onto SBA-15 type mesoporous silica. J. Membr. Sci. 2010, 357:1-5.
    • (2010) J. Membr. Sci. , vol.357 , pp. 1-5
    • Park, S.J.1    Lee, D.H.2    Kang, Y.S.3
  • 62
    • 2442715186 scopus 로고    scopus 로고
    • Anhydrous protonic conductivity of a self-assembled acid-base composite material
    • Yamada M., Honma I. Anhydrous protonic conductivity of a self-assembled acid-base composite material. J. Phys. Chem. B 2004, 108:5522-5526.
    • (2004) J. Phys. Chem. B , vol.108 , pp. 5522-5526
    • Yamada, M.1    Honma, I.2
  • 63
    • 41949128505 scopus 로고    scopus 로고
    • Novel acid-base polyimides synthesized from binaphthalene dianhydrie and triphenylamine-containing diamine as proton exchange membranes
    • Zhang F., Li N., Cui Z., Zhang S., Li S. Novel acid-base polyimides synthesized from binaphthalene dianhydrie and triphenylamine-containing diamine as proton exchange membranes. J. Membr. Sci. 2008, 314:24-32.
    • (2008) J. Membr. Sci. , vol.314 , pp. 24-32
    • Zhang, F.1    Li, N.2    Cui, Z.3    Zhang, S.4    Li, S.5
  • 64
    • 38649110990 scopus 로고    scopus 로고
    • Sulfonated polysulfone with 1,3-1H-dibenzimidazole-benzene additive as a membrane for direct methanol fuel cells
    • Fu Y., Li W., Manthiram A. Sulfonated polysulfone with 1,3-1H-dibenzimidazole-benzene additive as a membrane for direct methanol fuel cells. J. Membr. Sci. 2008, 310:262-267.
    • (2008) J. Membr. Sci. , vol.310 , pp. 262-267
    • Fu, Y.1    Li, W.2    Manthiram, A.3
  • 65
    • 33748766330 scopus 로고    scopus 로고
    • Proton conducting membrane using multi-layer acid-base complex formation on porous PE film
    • Cho M.S., Son H.D., Nam J.D., Suh S.J., Lee Y. Proton conducting membrane using multi-layer acid-base complex formation on porous PE film. J. Membr. Sci. 2006, 284:155-160.
    • (2006) J. Membr. Sci. , vol.284 , pp. 155-160
    • Cho, M.S.1    Son, H.D.2    Nam, J.D.3    Suh, S.J.4    Lee, Y.5
  • 66
    • 34247606029 scopus 로고    scopus 로고
    • ®-polybenzimidazole (PBI) composite membranes for DMFC applications
    • ®-polybenzimidazole (PBI) composite membranes for DMFC applications. Solid State Ionics 2007, 178:581-585.
    • (2007) Solid State Ionics , vol.178 , pp. 581-585
    • Ainla, A.1    Brandell, D.2
  • 67
    • 10444220226 scopus 로고    scopus 로고
    • Proton exchange membranes based on sulfonated poly(phthalazinone ether ketone)s/aminated polymer blends
    • Gao Y., Robertson G.P., Guiver M.D., Jian X., Mikhailenko S.D., Kaliaguine S. Proton exchange membranes based on sulfonated poly(phthalazinone ether ketone)s/aminated polymer blends. Solid State Ionics 2005, 176:409-415.
    • (2005) Solid State Ionics , vol.176 , pp. 409-415
    • Gao, Y.1    Robertson, G.P.2    Guiver, M.D.3    Jian, X.4    Mikhailenko, S.D.5    Kaliaguine, S.6
  • 68
    • 58149096854 scopus 로고    scopus 로고
    • Effect of polymer composition and water content on proton conductivity in vinyl benzyl phosphonic acid-4-vinyl pyridine copolymers
    • Jiang F., Kaltbeitzel A., Fassbender B., Brunklaus G., Pu H., Meyer W.H., Spiess H.W., Wegner G. Effect of polymer composition and water content on proton conductivity in vinyl benzyl phosphonic acid-4-vinyl pyridine copolymers. Macromol. Chem. Phys. 2008, 209:2494-2503.
    • (2008) Macromol. Chem. Phys. , vol.209 , pp. 2494-2503
    • Jiang, F.1    Kaltbeitzel, A.2    Fassbender, B.3    Brunklaus, G.4    Pu, H.5    Meyer, W.H.6    Spiess, H.W.7    Wegner, G.8
  • 70
    • 34548503645 scopus 로고    scopus 로고
    • Hybrid materials for polymer electrolyte membrane fuel cells: water uptake, mechanical and transport properties
    • Di Vona M.L., Marani D., D'Epifanio A., Licoccia S., Beurroies I., Denoyel R., Knauth P. Hybrid materials for polymer electrolyte membrane fuel cells: water uptake, mechanical and transport properties. J. Membr. Sci. 2007, 304:76-81.
    • (2007) J. Membr. Sci. , vol.304 , pp. 76-81
    • Di Vona, M.L.1    Marani, D.2    D'Epifanio, A.3    Licoccia, S.4    Beurroies, I.5    Denoyel, R.6    Knauth, P.7
  • 71
    • 59649088546 scopus 로고    scopus 로고
    • Tuning the performance of direct methanol fuel cell membranes by embedding multifunctional inorganic submicrospheres into polymer matrix
    • Wang J., Zhang H., Jiang Z., Yang X., Xiao L. Tuning the performance of direct methanol fuel cell membranes by embedding multifunctional inorganic submicrospheres into polymer matrix. J. Power Sources 2009, 188:64-74.
    • (2009) J. Power Sources , vol.188 , pp. 64-74
    • Wang, J.1    Zhang, H.2    Jiang, Z.3    Yang, X.4    Xiao, L.5
  • 72
    • 34547591138 scopus 로고    scopus 로고
    • Functionalized zeolite A-nafion composite membranes for direct methanol fuel cells
    • Li X., Roberts E.P.L., Holmes S.M., Zholobenko V. Functionalized zeolite A-nafion composite membranes for direct methanol fuel cells. Solid State Ionics 2007, 178:1248-1255.
    • (2007) Solid State Ionics , vol.178 , pp. 1248-1255
    • Li, X.1    Roberts, E.P.L.2    Holmes, S.M.3    Zholobenko, V.4
  • 73
    • 0037126465 scopus 로고    scopus 로고
    • Enhancing proton mobility in polymer electrolyte membranes: lessons from molecular dynamics simulations
    • Spohr E., Commer P., Kornyshev A.A. Enhancing proton mobility in polymer electrolyte membranes: lessons from molecular dynamics simulations. J. Phys. Chem. B 2002, 106:10560-10569.
    • (2002) J. Phys. Chem. B , vol.106 , pp. 10560-10569
    • Spohr, E.1    Commer, P.2    Kornyshev, A.A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.