|
Volumn 122, Issue , 2014, Pages 744-750
|
Different approaches in Partial Least Squares and Artificial Neural Network models applied for the analysis of a ternary mixture of Amlodipine, Valsartan and Hydrochlorothiazide
|
Author keywords
Amlodipine; ANN; GA; Hydrochlorothiazide; PLS; Valsartan
|
Indexed keywords
AMLODIPINE;
ANN;
HYDROCHLOROTHIAZIDE;
PLS;
VALSARTAN;
DATA COMPRESSION;
GALLIUM;
LEAST SQUARES APPROXIMATIONS;
NEURAL NETWORKS;
PRINCIPAL COMPONENT ANALYSIS;
MIXTURES;
AMLODIPINE;
ANTIHYPERTENSIVE AGENT;
DRUG DERIVATIVE;
HYDROCHLOROTHIAZIDE;
TETRAZOLE DERIVATIVE;
VALINE;
VALSARTAN;
ANN;
ARTICLE;
ARTIFICIAL NEURAL NETWORK;
DRUG DOSAGE FORM;
GA;
PLS;
PRINCIPAL COMPONENT ANALYSIS;
REGRESSION ANALYSIS;
ULTRAVIOLET SPECTROPHOTOMETRY;
AMLODIPINE;
ANN;
GA;
HYDROCHLOROTHIAZIDE;
PLS;
VALSARTAN;
AMLODIPINE;
ANTIHYPERTENSIVE AGENTS;
DOSAGE FORMS;
HYDROCHLOROTHIAZIDE;
LEAST-SQUARES ANALYSIS;
NEURAL NETWORKS (COMPUTER);
PRINCIPAL COMPONENT ANALYSIS;
SPECTROPHOTOMETRY, ULTRAVIOLET;
TETRAZOLES;
VALINE;
|
EID: 84891621227
PISSN: 13861425
EISSN: None
Source Type: Journal
DOI: 10.1016/j.saa.2013.11.045 Document Type: Article |
Times cited : (23)
|
References (42)
|