-
1
-
-
0000307085
-
On an inequality of Lieb and Thirring
-
10.1007/BF01045887
-
Araki H. On an inequality of Lieb and Thirring. Lett. Math. Phys. 1990, 19(2):167-170. 10.1007/BF01045887
-
(1990)
Lett. Math. Phys.
, vol.19
, Issue.2
, pp. 167-170
-
-
Araki, H.1
-
2
-
-
33747650890
-
Information measures and capacity of order alpha for discrete memoryless channels
-
I. Csiszar, P. Elias, ser. Colloq. Math. Soc. J. Bolyai, Eds., Amsterdam, North Holland
-
Arimoto S. Information measures and capacity of order alpha for discrete memoryless channels. Topics in Information Theory 1977, 16:41-52. I. Csiszar, P. Elias, in ser. Colloq. Math. Soc. J. BolyaiEds., Amsterdam, North Holland
-
(1977)
Topics in Information Theory
, vol.16
, pp. 41-52
-
-
Arimoto, S.1
-
3
-
-
84871858487
-
Quantum state discrimination bounds for finite sample size
-
10.1063/1.4768252
-
Audenaert K.M. R. Mosonyi M. Verstraete F. Quantum state discrimination bounds for finite sample size. J. Math. Phys. 2012, 53(12):122205. 10.1063/1.4768252.
-
(2012)
J. Math. Phys.
, vol.53
, Issue.12
, pp. 122205
-
-
Audenaert, K.M.R.1
Mosonyi, M.2
Verstraete, F.3
-
4
-
-
84891512930
-
Sandwiched Rényi divergence satisfies data processing inequality
-
10.1063/1.4838855
-
Beigi S. Sandwiched Rényi divergence satisfies data processing inequality. J. Math. Phys. 2013, 54:122202. 10.1063/1.4838855
-
(2013)
J. Math. Phys.
, vol.54
, pp. 122202
-
-
Beigi, S.1
-
5
-
-
77956305813
-
The uncertainty principle in the presence of quantum memory
-
10.1038/nphys1734
-
Berta M. Christandl M. Colbeck R. Renes J.M. Renner R. The uncertainty principle in the presence of quantum memory. Nat. Phys. 2010, 6(9):659-662. 10.1038/nphys1734.
-
(2010)
Nat. Phys.
, vol.6
, Issue.9
, pp. 659-662
-
-
Berta, M.1
Christandl, M.2
Colbeck, R.3
Renes, J.M.4
Renner, R.5
-
6
-
-
0004151496
-
-
Graduate Texts in Mathematics, (Springer).
-
Bhatia R. Matrix Analysis 1997, 169. Graduate Texts in Mathematics Vol. (Springer).
-
(1997)
Matrix Analysis
, vol.169
-
-
Bhatia, R.1
-
7
-
-
84861644154
-
Uncertainty relations from simple entropic properties
-
10.1103/PhysRevLett.108.210405
-
Coles P.J. Colbeck R. Yu L. Zwolak M. Uncertainty relations from simple entropic properties. Phys. Rev. Lett. 2012, 108(21):210405. 10.1103/PhysRevLett.108.210405.
-
(2012)
Phys. Rev. Lett.
, vol.108
, Issue.21
, pp. 210405
-
-
Coles, P.J.1
Colbeck, R.2
Yu, L.3
Zwolak, M.4
-
8
-
-
0029219702
-
Generalized cutoff rates and Renyi's information measures
-
10.1109/18.370121
-
Csiszar I. Generalized cutoff rates and Renyi's information measures. IEEE Trans. Inf. Theory 1995, 41(1):26-34. 10.1109/18.370121
-
(1995)
IEEE Trans. Inf. Theory
, vol.41
, Issue.1
, pp. 26-34
-
-
Csiszar, I.1
-
9
-
-
66949151794
-
Min- and max-relative entropies and a new entanglement monotone
-
10.1109/TIT.2009.2018325
-
Datta N. Min- and max-relative entropies and a new entanglement monotone. IEEE Trans. Inf. Theory 2009, 55(6):2816-2826. 10.1109/TIT.2009.2018325
-
(2009)
IEEE Trans. Inf. Theory
, vol.55
, Issue.6
, pp. 2816-2826
-
-
Datta, N.1
-
10
-
-
84891513267
-
A limit of the quantum Rényi divergence
-
e-print arXiv:1308.5961.
-
Datta N. Leditzky F. A limit of the quantum Rényi divergence. and e-print arXiv:1308.5961.
-
-
-
Datta, N.1
Leditzky, F.2
-
11
-
-
84891498366
-
Entanglement sampling and applications
-
e-print arXiv:1305.1316.
-
Dupuis F. Fawzi O. Wehner S. Entanglement sampling and applications. and e-print arXiv:1305.1316.
-
-
-
Dupuis, F.1
Fawzi, O.2
Wehner, S.3
-
12
-
-
84891535488
-
Monotonicity of a relative Rényi entropy
-
10.1063/1.4838835
-
Frank R.L. Lieb E.H. Monotonicity of a relative Rényi entropy. J. Math. Phys. 2013, 54:122201. 10.1063/1.4838835
-
(2013)
J. Math. Phys.
, vol.54
, pp. 122201
-
-
Frank, R.L.1
Lieb, E.H.2
-
13
-
-
41549146719
-
Error exponents in hypothesis testing for correlated states on a spin chain
-
10.1063/1.2872276, e-print arXiv:0707.2020.
-
Hiai F. Mosonyi M. Ogawa T. Error exponents in hypothesis testing for correlated states on a spin chain. J. Math. Phys. 2008, 49:032112. 10.1063/1.2872276; e-print arXiv:0707.2020.
-
(2008)
J. Math. Phys.
, vol.49
, pp. 032112
-
-
Hiai, F.1
Mosonyi, M.2
Ogawa, T.3
-
14
-
-
34250918551
-
Zur Quantenmechanischen Begründung des zweiten Hauptsatzes der Wärmelehre
-
10.1007/BF01341997
-
Klein O. Zur Quantenmechanischen Begründung des zweiten Hauptsatzes der Wärmelehre. Z. Phys. 1931, 72(11-12):767-775. 10.1007/BF01341997
-
(1931)
Z. Phys.
, vol.72
, Issue.11-12
, pp. 767-775
-
-
Klein, O.1
-
15
-
-
69449101829
-
The operational meaning of min- and max-entropy
-
10.1109/TIT.2009.2025545
-
König R. Renner R. Schaffner C. The operational meaning of min- and max-entropy. IEEE Trans. Inf. Theory 2009, 55(9):4337-4347. 10.1109/TIT.2009.2025545
-
(2009)
IEEE Trans. Inf. Theory
, vol.55
, Issue.9
, pp. 4337-4347
-
-
König, R.1
Renner, R.2
Schaffner, C.3
-
16
-
-
68949114247
-
A strong converse for classical channel coding using entangled inputs
-
10.1103/PhysRevLett.103.070504
-
König R. Wehner S. A strong converse for classical channel coding using entangled inputs. Phys. Rev. Lett. 2009, 103(7):070504. 10.1103/PhysRevLett.103.070504
-
(2009)
Phys. Rev. Lett.
, vol.103
, Issue.7
, pp. 070504
-
-
König, R.1
Wehner, S.2
-
18
-
-
0004967775
-
Proof of the strong subadditivity of quantum-mechanical entropy
-
10.1063/1.1666274
-
Lieb E.H. Ruskai M.B. Proof of the strong subadditivity of quantum-mechanical entropy. J. Math. Phys. 1973, 14(12):1938. 10.1063/1.1666274
-
(1973)
J. Math. Phys.
, vol.14
, Issue.12
, pp. 1938
-
-
Lieb, E.H.1
Ruskai, M.B.2
-
19
-
-
0001335497
-
Expectations and entropy inequalities for finite quantum systems
-
10.1007/BF01608390
-
Lindblad G. Expectations and entropy inequalities for finite quantum systems. Commun. Math. Phys. 1974, 39:111-119. 10.1007/BF01608390
-
(1974)
Commun. Math. Phys.
, vol.39
, pp. 111-119
-
-
Lindblad, G.1
-
20
-
-
0001930151
-
Completely positive maps and entropy inequalities
-
10.1007/BF01609396
-
Lindblad G. Completely positive maps and entropy inequalities. Commun. Math. Phys. 1975, 40:147-151. 10.1007/BF01609396
-
(1975)
Commun. Math. Phys.
, vol.40
, pp. 147-151
-
-
Lindblad, G.1
-
21
-
-
0001287029
-
Generalized entropic uncertainty relations
-
10.1103/PhysRevLett.60.1103
-
Maassen H. Uffink J. Generalized entropic uncertainty relations. Phys. Rev. Lett. 1988, 60(12):1103-1106. 10.1103/PhysRevLett.60.1103
-
(1988)
Phys. Rev. Lett.
, vol.60
, Issue.12
, pp. 1103-1106
-
-
Maassen, H.1
Uffink, J.2
-
22
-
-
68749089914
-
Generalized relative entropies and the capacity of classical-quantum channels
-
10.1063/1.3167288
-
Mosonyi M. Datta N. Generalized relative entropies and the capacity of classical-quantum channels. J. Math. Phys. 2009, 50:072104. 10.1063/1.3167288.
-
(2009)
J. Math. Phys.
, vol.50
, pp. 072104
-
-
Mosonyi, M.1
Datta, N.2
-
23
-
-
79952824089
-
On the quantum Renyi relative entropies and related capacity formulas
-
10.1109/TIT.2011.2110050
-
Mosonyi M. Hiai F. On the quantum Renyi relative entropies and related capacity formulas. IEEE Trans. Inf. Theory 2011, 57:2474-2487. 10.1109/TIT.2011.2110050
-
(2011)
IEEE Trans. Inf. Theory
, vol.57
, pp. 2474-2487
-
-
Mosonyi, M.1
Hiai, F.2
-
24
-
-
84923615213
-
Quantum hypothesis testing and the operational interpretation of the quantum Renyi relative entropies
-
e-print arXiv:1309.3228.
-
Mosonyi M. Ogawa T. Quantum hypothesis testing and the operational interpretation of the quantum Renyi relative entropies. and e-print arXiv:1309.3228.
-
-
-
Mosonyi, M.1
Ogawa, T.2
-
25
-
-
84891545793
-
Quantum relative Rényi entropies
-
Master thesis, ETH Zurich.
-
Müller-Lennert M. Quantum relative Rényi entropies. 2013, Master thesis, ETH Zurich.
-
(2013)
-
-
Müller-Lennert, M.1
-
26
-
-
84891529492
-
On quantum Rényi entropies: A new definition, some properties and several conjectures
-
e-print arXiv:1306.3142v1.
-
Müller-Lennert M. Dupuis F. Szehr O. Fehr S. Tomamichel M. On quantum Rényi entropies: A new definition, some properties and several conjectures. and e-print arXiv:1306.3142v1.
-
-
-
Müller-Lennert, M.1
Dupuis, F.2
Szehr, O.3
Fehr, S.4
Tomamichel, M.5
-
27
-
-
0034316025
-
Strong converse and Stein's lemma in quantum hypothesis testing
-
10.1109/18.887855
-
Ogawa T. Nagaoka H. Strong converse and Stein's lemma in quantum hypothesis testing. IEEE Trans. Inf. Theory 2000, 46(7):2428-2433. 10.1109/18.887855
-
(2000)
IEEE Trans. Inf. Theory
, vol.46
, Issue.7
, pp. 2428-2433
-
-
Ogawa, T.1
Nagaoka, H.2
-
28
-
-
2942640136
-
On error exponents in quantum hypothesis testing
-
10.1109/TIT.2004.828155
-
Ogawa T. Hayashi M. On error exponents in quantum hypothesis testing. IEEE Trans. Inf. Theory 2004, 50(6):1368-1372. 10.1109/TIT.2004.828155
-
(2004)
IEEE Trans. Inf. Theory
, vol.50
, Issue.6
, pp. 1368-1372
-
-
Ogawa, T.1
Hayashi, M.2
-
29
-
-
0033540129
-
Hypercontractivity in noncommutative Lp spaces
-
10.1006/jfan.1998.3342
-
Olkiewicz R. Zegarlinski B. Hypercontractivity in noncommutative Lp spaces. J. Funct. Anal. 1999, 161(1):246-285. 10.1006/jfan.1998.3342
-
(1999)
J. Funct. Anal.
, vol.161
, Issue.1
, pp. 246-285
-
-
Olkiewicz, R.1
Zegarlinski, B.2
-
30
-
-
0002988067
-
Quasi-entropies for finite quantum systems
-
10.1016/0034-4877(86)90067-4
-
Petz D. Quasi-entropies for finite quantum systems. Rep. Math. Phys. 1986, 23:57-65. 10.1016/0034-4877(86)90067-4
-
(1986)
Rep. Math. Phys.
, vol.23
, pp. 57-65
-
-
Petz, D.1
-
31
-
-
33846181385
-
Security of quantum key distribution
-
Ph.D. thesis, ETH Zurich.
-
Renner R. Security of quantum key distribution. 2005, Ph.D. thesis, ETH Zurich.
-
(2005)
-
-
Renner, R.1
-
33
-
-
0035981724
-
Inequalities for quantum entropy: A review with conditions for equality
-
10.1063/1.1497701
-
Ruskai M.-B. Inequalities for quantum entropy: A review with conditions for equality. J. Math. Phys. 2002, 43(9):4358. 10.1063/1.1497701
-
(2002)
J. Math. Phys.
, vol.43
, Issue.9
, pp. 4358
-
-
Ruskai, M.-B.1
-
34
-
-
84856043672
-
A mathematical theory of communication
-
10.1002/j.1538-7305.1948.tb01338.x
-
Shannon C. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27:379-423. 10.1002/j.1538-7305.1948.tb01338.x
-
(1948)
Bell Syst. Tech. J.
, vol.27
, pp. 379-423
-
-
Shannon, C.1
-
35
-
-
84972513554
-
On general minimax theorems
-
10.2140/pjm.1958.8.171
-
Sion M. On general minimax theorems. Pac. J. Math. 1958, 8:171-176. 10.2140/pjm.1958.8.171
-
(1958)
Pac. J. Math.
, vol.8
, pp. 171-176
-
-
Sion, M.1
-
36
-
-
84968466834
-
Positive functions on C*-algebras
-
10.1090/S0002-9939-1955-0069403-4
-
Stinespring W.F. Positive functions on C*-algebras. Proc. Am. Math. Soc. 1955, 6:211-216. 10.1090/S0002-9939-1955-0069403-4
-
(1955)
Proc. Am. Math. Soc.
, vol.6
, pp. 211-216
-
-
Stinespring, W.F.1
-
37
-
-
84876755252
-
A framework for non-asymptotic quantum information theory
-
Ph.D. thesis, ETH Zurich.
-
Tomamichel M. A framework for non-asymptotic quantum information theory. 2012, Ph.D. thesis, ETH Zurich.
-
(2012)
-
-
Tomamichel, M.1
-
38
-
-
84891531122
-
Focus Tutorial: Smooth min/max-entropies
-
QCrypt 2012, Slides available online at.
-
Tomamichel M. Focus Tutorial: Smooth min/max-entropies. QCrypt 2012, Slides available online at.
-
-
-
Tomamichel, M.1
-
39
-
-
77949536061
-
A fully quantum asymptotic equipartition property
-
10.1109/TIT.2009.2032797
-
Tomamichel M. Colbeck R. Renner R. A fully quantum asymptotic equipartition property. IEEE Trans. Inf. Theory 2009, 55(12):5840-5847. 10.1109/TIT.2009.2032797.
-
(2009)
IEEE Trans. Inf. Theory
, vol.55
, Issue.12
, pp. 5840-5847
-
-
Tomamichel, M.1
Colbeck, R.2
Renner, R.3
-
40
-
-
79952714639
-
Uncertainty relation for smooth entropies
-
10.1103/PhysRevLett.106.110506
-
Tomamichel M. Renner R. Uncertainty relation for smooth entropies. Phys. Rev. Lett. 2011, 106(11):110506. 10.1103/PhysRevLett.106.110506.
-
(2011)
Phys. Rev. Lett.
, vol.106
, Issue.11
, pp. 110506
-
-
Tomamichel, M.1
Renner, R.2
-
42
-
-
0042030118
-
Relative entropy and the Wigner-Yanase-Dyson-Lieb concavity in an interpolation theory
-
10.1007/BF01609834
-
Uhlmann A. Relative entropy and the Wigner-Yanase-Dyson-Lieb concavity in an interpolation theory. Commun. Math. Phys. 1977, 54:21-32. 10.1007/BF01609834
-
(1977)
Commun. Math. Phys.
, vol.54
, pp. 21-32
-
-
Uhlmann, A.1
-
43
-
-
84891501226
-
Strong converse for the classical capacity of entanglement-breaking channels
-
e-print arXiv:1306.1586.
-
Wilde M.M. Winter A. Yang D. Strong converse for the classical capacity of entanglement-breaking channels. and e-print arXiv:1306.1586.
-
-
-
Wilde, M.M.1
Winter, A.2
Yang, D.3
-
45
-
-
84891506339
-
-
In contrast, the mean H(ρ⊕σ)=max{H(ρ),H(σ)} would lead to a quantity that is not continuous.
-
In contrast, the mean H(ρ⊕σ)=max{H(ρ),H(σ)} would lead to a quantity that is not continuous.
-
-
-
-
46
-
-
84891525186
-
-
2)
-
2).
-
-
-
|