메뉴 건너뛰기




Volumn , Issue , 2013, Pages 11-20

ARIGUMA code analyzer: Efficient variant detection by identifying common instruction sequences in malware families

Author keywords

Incremental clustering; LCS; Malware classification; Static analysis

Indexed keywords

APPLICATION PROGRAMS; CODES (SYMBOLS); COMPUTER CRIME; COST BENEFIT ANALYSIS; COSTS; MALWARE; PATTERN RECOGNITION;

EID: 84891301295     PISSN: 07303157     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/COMPSAC.2013.6     Document Type: Conference Paper
Times cited : (14)

References (18)
  • 5
    • 0141828444 scopus 로고    scopus 로고
    • Speedingup hirschberg and hunt-szymanski lcs algorithms
    • IOS Press
    • M. Crochemore, C.S. Iliopoulos, Y.J. Pinzon, et al. Speedingup hirschberg and hunt-szymanski lcs algorithms. In Fundamenta Informaticae, Vol. 56, pp. 89-103. IOS Press, 2003.
    • (2003) Fundamenta Informaticae , vol.56 , pp. 89-103
    • Crochemore, M.1    Iliopoulos, C.S.2    Pinzon, Y.J.3
  • 7
    • 80255126150 scopus 로고    scopus 로고
    • Malware classification based on call graph clustering
    • Springer
    • J. Kinable and O. Kostakis. Malware classification based on call graph clustering. In Journal in Computer Virology, Vol. 7, pp. 233-245. Springer, 2011.
    • (2011) Journal in Computer Virology , vol.7 , pp. 233-245
    • Kinable, J.1    Kostakis, O.2
  • 11
    • 0342289701 scopus 로고
    • Methods for demonstrating resemblance in taxonomy and ecology
    • AV Hall. Methods for demonstrating resemblance in taxonomy and ecology. In Nature, Vol. 214, pp. 830-831, 1967.
    • (1967) Nature , vol.214 , pp. 830-831
    • Hall, A.V.1
  • 12
    • 0024855526 scopus 로고
    • An efficient sequential clustering method
    • Elsevier
    • P. Trahanias and E. Skordalakis. An efficient sequential clustering method. In Pattern recognition, Vol. 22, pp. 449-453. Elsevier, 1989.
    • (1989) Pattern Recognition , vol.22 , pp. 449-453
    • Trahanias, P.1    Skordalakis, E.2
  • 13
    • 0016518550 scopus 로고
    • A linear space algorithm for computing maximal common subsequences
    • ACM
    • D.S. Hirschberg. A linear space algorithm for computing maximal common subsequences. In Communications of the ACM, Vol. 18, pp. 341-343. ACM, 1975.
    • (1975) Communications of the ACM , vol.18 , pp. 341-343
    • Hirschberg, D.S.1
  • 17
    • 84891280008 scopus 로고    scopus 로고
    • Malware classification based on svm and labeling by api's tendency
    • IPSJ
    • Usui T, Shigematsu K, Takeda K, and Murai J. Malware classification based on svm and labeling by api's tendency. In Computer Security Symposium, pp. 797-802. IPSJ, 2011.
    • (2011) Computer Security Symposium , pp. 797-802
    • Usui, T.1    Shigematsu, K.2    Takeda, K.3    Murai, J.4
  • 18
    • 26944454497 scopus 로고    scopus 로고
    • Roc graphs: Notes and practical considerations for researchers
    • T. Fawcett. Roc graphs: Notes and practical considerations for researchers. In Machine Learning, Vol. 31, pp. 1-38, 2004.
    • (2004) Machine Learning , vol.31 , pp. 1-38
    • Fawcett, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.