-
1
-
-
70449102559
-
Semi-supervised feature selection viaspectral analysis
-
Minneapolis, Minnesoda
-
H. Zhao and H. Liu, "Semi-supervised feature selection viaspectral analysis," in Proc. SIAM International Conference onData Mining, Minneapolis, Minnesoda, 2007, pp. 641-646.
-
(2007)
Proc. SIAM International Conference OnData Mining
, pp. 641-646
-
-
Zhao, H.1
Liu, H.2
-
2
-
-
44649111202
-
Locality sensitive semisupervisedfeature selection
-
J. Zhao, K. Lu, and X. He, "Locality sensitive semisupervisedfeature selection," Neurocomputing, vol. 71, pp. 1842-1849, 2008.
-
(2008)
Neurocomputing
, vol.71
, pp. 1842-1849
-
-
Zhao, J.1
Lu, K.2
He, X.3
-
3
-
-
67049167710
-
Graph-based iterative hybrid feature selection
-
Pisa, Italy
-
E. Zhong, S. Xie, W. Fan, J. Ren, J. Peng, and K. Zhang,"Graph-based iterative hybrid feature selection," in Proc. 8thInternational Conference on Data Mining, Pisa, Italy, 2008,pp. 1133-1138.
-
(2008)
Proc. 8thInternational Conference on Data Mining
, pp. 1133-1138
-
-
Zhong, E.1
Xie, S.2
Fan, W.3
Ren, J.4
Peng, J.5
Zhang, K.6
-
4
-
-
84891282145
-
Using self-training and graph laplacianin semi-supervised band selection for hyperspectral imageclassification
-
Chongqing, China
-
R. Huang and Z. Lv, "Using self-training and graph laplacianin semi-supervised band selection for hyperspectral imageclassification," in Proc. International Conference on NaturalComputer, Chongqing, China, 2012, pp. 1747-1751.
-
(2012)
Proc. International Conference on NaturalComputer
, pp. 1747-1751
-
-
Huang, R.1
Lv, Z.2
-
5
-
-
33847676236
-
Neighborhood property based patternselection for support vector machines
-
H. Shin and S. Cho, "Neighborhood property based patternselection for support vector machines," Neural Computation,vol. 19, no. 3, pp. 816-855, 2007.
-
(2007)
Neural Computation
, vol.19
, Issue.3
, pp. 816-855
-
-
Shin, H.1
Cho, S.2
-
6
-
-
84867615121
-
Efficient manifoldlearning for 3d model retrieval by using clustering-basedtraining sample reduction
-
Speech and Signal Processing, Kyoto, Japan
-
M. Endoh, T. Yanagimachi, and R. Ohbuchi, "Efficient manifoldlearning for 3d model retrieval by using clustering-basedtraining sample reduction," in Proc. International Conferenceon Acoustics, Speech and Signal Processing, Kyoto, Japan, 2012, pp. 2345-2348.
-
(2012)
Proc. International Conferenceon Acoustics
, pp. 2345-2348
-
-
Endoh, M.1
Yanagimachi, T.2
Ohbuchi, R.3
-
7
-
-
34047241118
-
A new data selection principlefor semi-supervised incremental learning
-
Hongkong, China
-
R. Zhang and A. I. Rudnicky, "A new data selection principlefor semi-supervised incremental learning," in Proc. 18thInternational Conference on Pattern Recognition, Hongkong,China, 2006, pp. 780-783.
-
(2006)
Proc. 18thInternational Conference on Pattern Recognition
, pp. 780-783
-
-
Zhang, R.1
Rudnicky, A.I.2
-
8
-
-
33751032652
-
The impactof sample reduction on pca-based feature extraction forsupervised learning
-
Dijon, France
-
M. Pechenizkiy, S. Puuronen, and A. Tsymbal, "The impactof sample reduction on pca-based feature extraction forsupervised learning," in Proc. ACM symposium on appliedcomputing, Dijon, France, 2006, pp. 553-558.
-
(2006)
Proc. ACM Symposium on Appliedcomputing
, pp. 553-558
-
-
Pechenizkiy, M.1
Puuronen, S.2
Tsymbal, A.3
-
9
-
-
0026172104
-
Watersheds in digital spaces: Anefficient algorithm based on immersion simulations
-
L. Vincent and P. Soille, "Watersheds in digital spaces: anefficient algorithm based on immersion simulations," IEEETrans. Pattern Anal. Mach. Intell., vol. 13, no. 6, pp. 583-598, 1991.
-
(1991)
IEEETrans. Pattern Anal. Mach. Intell.
, vol.13
, Issue.6
, pp. 583-598
-
-
Vincent, L.1
Soille, P.2
-
10
-
-
84864039505
-
Laplacian score for featureselection
-
X. He, D. Cai, and P. Niyogi1, "Laplacian score for featureselection," in Advances in Neural Information ProcessingSystems, vol. 18, 2006, pp. 507-514.
-
(2006)
Advances in Neural Information ProcessingSystems
, vol.18
, pp. 507-514
-
-
He, X.1
Cai, D.2
Niyogii, P.3
|