메뉴 건너뛰기




Volumn 6, Issue 10, 2013, Pages 853-864

Hadoop's adolescence: An analysis of hadoop usage in scientific workloads

Author keywords

[No Author keywords available]

Indexed keywords

AUTOMATIC TUNING; MEASUREMENT STUDY; RESOURCE USAGE; SCIENTIFIC WORKLOADS; USER-CENTERED; USER-CENTRIC;

EID: 84891051380     PISSN: None     EISSN: 21508097     Source Type: Journal    
DOI: 10.14778/2536206.2536213     Document Type: Article
Times cited : (95)

References (27)
  • 1
    • 77950495739 scopus 로고    scopus 로고
    • Yahoo! reaches for the stars with M45 supercomputing project
    • Yahoo! reaches for the stars with M45 supercomputing project. http://research.yahoo.com/node/1884.
  • 2
    • 79960166230 scopus 로고    scopus 로고
    • Reining in the outliers in Map-Reduce clusters using Mantri
    • G. Ananthanarayanan et al. Reining in the outliers in Map-Reduce clusters using Mantri. In OSDI, 2010.
    • (2010) OSDI
    • Ananthanarayanan, G.1
  • 3
    • 84919827070 scopus 로고    scopus 로고
    • PACMan: Coordinated memory caching for parallel jobs.
    • G. Ananthanarayanan et al. PACMan: Coordinated memory caching for parallel jobs. In NSDI, 2012.
    • (2012) NSDI
    • Ananthanarayanan, G.1
  • 4
    • 85039631675 scopus 로고    scopus 로고
    • Apache Foundation. Hadoop.
    • Apache Foundation. Hadoop. http://hadoop.apache.org/.
  • 5
    • 84874585436 scopus 로고    scopus 로고
    • Mahout: Scalable machine learning and data mining
    • Apache Foundation
    • Apache Foundation. Mahout: Scalable machine learning and data mining. http://mahout.apache.org/.
  • 6
    • 77952775707 scopus 로고    scopus 로고
    • Hive: a petabyte scale data warehouse using Hadoop.
    • Ashish Thusoo et. al. Hive: a petabyte scale data warehouse using Hadoop. In ICDE, pages 996-1005, 2010.
    • (2010) ICDE , pp. 996-1005
    • Thusoo, A.1
  • 7
    • 77954942463 scopus 로고    scopus 로고
    • Towards automatic optimization of mapreduce programs.
    • S. Babu. Towards automatic optimization of mapreduce programs. In SoCC, pages 137-142, 2010.
    • (2010) SoCC , pp. 137-142
    • Babu, S.1
  • 8
    • 67650326696 scopus 로고    scopus 로고
    • The Hadoop distributed file system: Architecture and design
    • D. Borthakur. The Hadoop distributed file system: Architecture and design. http://lucene.apache.org/hadoop/hdfs_design.pdf, 2007.
    • (2007)
    • Borthakur, D.1
  • 9
    • 80053019024 scopus 로고    scopus 로고
    • The case for evaluating MapReduce performance using workload suites
    • Y. Chen et al. The case for evaluating MapReduce performance using workload suites. In MASCOTS, pages 390-399.
    • MASCOTS , pp. 390-399
    • Chen, Y.1
  • 10
    • 84873134968 scopus 로고    scopus 로고
    • Interactive query processing in big data systems: A cross-industry study of MapReduce workloads
    • Y. Chen et al. Interactive query processing in big data systems: A cross-industry study of MapReduce workloads. PVLDB, 5(12):1802-1813, 2012.
    • (2012) PVLDB , vol.5 , Issue.12 , pp. 1802-1813
    • Chen, Y.1
  • 11
    • 85039650777 scopus 로고    scopus 로고
    • Concurrent, Inc. Cascading.
    • Concurrent, Inc. Cascading. http://www.cascading.org/, 2012.
  • 12
    • 85030321143 scopus 로고    scopus 로고
    • MapReduce: Simplified data processing on large clusters
    • J. Dean and S. Ghemawat. MapReduce: Simplified data processing on large clusters. In OSDI, 2004.
    • (2004) OSDI
    • Dean, J.1    Ghemawat, S.2
  • 13
    • 84868142289 scopus 로고    scopus 로고
    • DiskReduce: RAID for data-intensive scalable computing
    • PDL, Carnegie Mellon University
    • B. Fan et al. DiskReduce: RAID for data-intensive scalable computing. Technical Report CMU-PDL-11-112, PDL, Carnegie Mellon University, 2011.
    • (2011) Technical Report CMU-PDL-11-112
    • Fan, B.1
  • 14
    • 82155174846 scopus 로고    scopus 로고
    • Profiling, what-if analysis, and cost-based optimization of MapReduce programs
    • H. Herodotou and S. Babu. Profiling, what-if analysis, and cost-based optimization of MapReduce programs. PVLDB, 4(11):1111-1122, 2011.
    • (2011) PVLDB , vol.4 , Issue.11 , pp. 1111-1122
    • Herodotou, H.1    Babu, S.2
  • 15
    • 77951152705 scopus 로고    scopus 로고
    • PEGASUS: A peta-scale graph mining system implementation and observations
    • U. Kang et al. PEGASUS: A peta-scale graph mining system implementation and observations. In ICDM, pages 229-238, 2009.
    • (2009) ICDM , pp. 229-238
    • Kang, U.1
  • 16
    • 77954901315 scopus 로고    scopus 로고
    • An analysis of traces from a production MapReduce cluster
    • S. Kavulya et al. An analysis of traces from a production MapReduce cluster. In CCGRID, pages 94-103, 2010.
    • (2010) CCGRID , pp. 94-103
    • Kavulya, S.1
  • 17
    • 85092653290 scopus 로고    scopus 로고
    • Optimizing data partitioning for data-parallel computing
    • Q. Ke et al. Optimizing data partitioning for data-parallel computing. In HotOS, 2011.
    • (2011) HotOS
    • Ke, Q.1
  • 18
    • 84863739408 scopus 로고    scopus 로고
    • Perfxplain: Debugging mapreduce job performance
    • N. Khoussainova et al. Perfxplain: Debugging mapreduce job performance. PVLDB, 5(7):598-609, 2012.
    • (2012) PVLDB , vol.5 , Issue.7 , pp. 598-609
    • Khoussainova, N.1
  • 19
    • 84862648481 scopus 로고    scopus 로고
    • SkewTune: mitigating skew in mapreduce applications.
    • Y. Kwon et al. SkewTune: mitigating skew in mapreduce applications. In SIGMOD, pages 25-36, 2012.
    • (2012) SIGMOD , pp. 25-36
    • Kwon, Y.1
  • 21
    • 77954723629 scopus 로고    scopus 로고
    • Pregel: a system for large-scale graph processing
    • G. Malewicz et al. Pregel: a system for large-scale graph processing. In SIGMOD, pages 135-146, 2010.
    • (2010) SIGMOD , pp. 135-146
    • Malewicz, G.1
  • 22
    • 55349148888 scopus 로고    scopus 로고
    • Pig Latin: a not-so-foreign language for data processing.
    • C. Olston et al. Pig Latin: a not-so-foreign language for data processing. In SIGMOD, pages 1099-1110, 2008.
    • (2008) SIGMOD , pp. 1099-1110
    • Olston, C.1
  • 23
    • 70849135404 scopus 로고    scopus 로고
    • Generating example data for dataflow programs.
    • C. Olston et al. Generating example data for dataflow programs. In SIGMOD, pages 245-256, 2009.
    • (2009) SIGMOD , pp. 245-256
    • Olston, C.1
  • 24
    • 70350512695 scopus 로고    scopus 로고
    • A comparison of approaches to large-scale data analysis
    • A. Pavlo et al. A comparison of approaches to large-scale data analysis. In SIGMOD, pages 165-178, 2009.
    • (2009) SIGMOD , pp. 165-178
    • Pavlo, A.1
  • 25
    • 84891076143 scopus 로고    scopus 로고
    • A Scalar productivity framework for Hadoop
    • Scoobi Team.
    • Scoobi Team. A Scalar productivity framework for Hadoop. https://github.com/NICTA/scoobi, 2012.
    • (2012)
  • 26
    • 82155186219 scopus 로고    scopus 로고
    • Modeling and synthesizing task placement constraints in Google compute clusters
    • B. Sharma et al. Modeling and synthesizing task placement constraints in Google compute clusters. In SoCC, pages 3:1-3:14, 2011.
    • (2011) SoCC , vol.3 , Issue.1-3 , pp. 14
    • Sharma, B.1
  • 27
    • 84863511023 scopus 로고    scopus 로고
    • Adaptive MapReduce using situation-aware mappers.
    • R. Vernica et al. Adaptive MapReduce using situation-aware mappers. In EDBT, pages 420-431, 2012.
    • (2012) EDBT , pp. 420-431
    • Vernica, R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.