-
1
-
-
0032487130
-
Hydrolysis of microcrystalline cellulose by cellobiohydrolase I and endoglucanase II from Trichoderma reesei: adsorption, sugar production pattern, and synergism of the enzymes
-
Medve J, Karlsson J, Lee D, Tjerneld F. 1998. Hydrolysis of microcrystalline cellulose by cellobiohydrolase I and endoglucanase II from Trichoderma reesei: adsorption, sugar production pattern, and synergism of the enzymes. Biotechnol. Bioeng. 59:621-634.
-
(1998)
Biotechnol. Bioeng.
, vol.59
, pp. 621-634
-
-
Medve, J.1
Karlsson, J.2
Lee, D.3
Tjerneld, F.4
-
2
-
-
0142106377
-
Engineering the exo-loop of Trichoderma reesei cellobiohydrolase, Ce17A. A comparison with Phanerochaete chrysosporium Cel7D
-
von Ossowski I, Stahlberg J, Koivula A, Piens K, Becker D, Boer H, Harle R, Harris M, Divne C, Mahdi S, Zhao YX, Driguez H, Claeyssens M, Sinnott ML, Teeri TT. 2003. Engineering the exo-loop of Trichoderma reesei cellobiohydrolase, Ce17A. A comparison with Phanerochaete chrysosporium Cel7D. J. Mol. Biol. 333:817-829. http://dx.doi.org/10.1016/S0022-2836(03)00881-7.
-
(2003)
J. Mol. Biol.
, vol.333
, pp. 817-829
-
-
von Ossowski, I.1
Stahlberg, J.2
Koivula, A.3
Piens, K.4
Becker, D.5
Boer, H.6
Harle, R.7
Harris, M.8
Divne, C.9
Mahdi, S.10
Zhao, Y.X.11
Driguez, H.12
Claeyssens, M.13
Sinnott, M.L.14
Teeri, T.T.15
-
3
-
-
70350493135
-
Processivity, synergism, and substrate specificity of Thermobifida fusca Cel6B
-
Vuong TV, Wilson DB. 2009. Processivity, synergism, and substrate specificity of Thermobifida fusca Cel6B. Appl. Environ. Microbiol. 75: 6655-6661. http://dx.doi.org/10.1128/AEM.01260-09.
-
(2009)
Appl. Environ. Microbiol.
, vol.75
, pp. 6655-6661
-
-
Vuong, T.V.1
Wilson, D.B.2
-
4
-
-
0027651651
-
Activity studies of eight purified cellulases: specificity, synergism, and binding domain effects
-
Irwin DC, Spezio M, Walker LP, Wilson DB. 1993. Activity studies of eight purified cellulases: specificity, synergism, and binding domain effects. Biotechnol. Bioeng. 42:1002-1013. http://dx.doi.org/10.1002/bit.260420811.
-
(1993)
Biotechnol. Bioeng.
, vol.42
, pp. 1002-1013
-
-
Irwin, D.C.1
Spezio, M.2
Walker, L.P.3
Wilson, D.B.4
-
5
-
-
76549243087
-
The biological degradation of soluble cellulose derivatives and its relationship to the mechanism of cellulose hydrolysis
-
Reese ET, Siu RG, Levinson HS. 1950. The biological degradation of soluble cellulose derivatives and its relationship to the mechanism of cellulose hydrolysis. J. Bacteriol. 59:485-497.
-
(1950)
J. Bacteriol.
, vol.59
, pp. 485-497
-
-
Reese, E.T.1
Siu, R.G.2
Levinson, H.S.3
-
6
-
-
0000709747
-
Synergism between enzymes involved in the solubilization of native cellulose
-
In Advances in chemistry. American Chemical Society, Washington, DC
-
Wood TM, McCrae SI. 1979. Synergism between enzymes involved in the solubilization of native cellulose, p 181-209. In Advances in chemistry. American Chemical Society, Washington, DC
-
(1979)
, pp. 181-209
-
-
Wood, T.M.1
McCrae, S.I.2
-
7
-
-
84879077110
-
A single-molecule analysis reveals morphological targets for cellulase synergy
-
Fox JM, Jess P, Jambusaria RB, Moo GM, Liphardt J, Clark DS, Blanch HW. 2013. A single-molecule analysis reveals morphological targets for cellulase synergy. Nat. Chem. Biol. 9:356-361. http://dx.doi.org/10.1038/nchembio.1227.
-
(2013)
Nat. Chem. Biol.
, vol.9
, pp. 356-361
-
-
Fox, J.M.1
Jess, P.2
Jambusaria, R.B.3
Moo, G.M.4
Liphardt, J.5
Clark, D.S.6
Blanch, H.W.7
-
8
-
-
84055221845
-
Synergistic interactions in cellulose hydrolysis
-
Kostylev M, Wilson DB. 2012. Synergistic interactions in cellulose hydrolysis. Biofuels 3:61-70. http://dx.doi.org/10.4155/bfs.11.150.
-
(2012)
Biofuels
, vol.3
, pp. 61-70
-
-
Kostylev, M.1
Wilson, D.B.2
-
9
-
-
0033485705
-
Acid hydrolysis of bacterial cellulose reveals different modes of synergistic action between cellobiohydrolase I and endoglucanase I
-
Valjamae P, Sild V, Nutt A, Pettersson G, Johansson G. 1999. Acid hydrolysis of bacterial cellulose reveals different modes of synergistic action between cellobiohydrolase I and endoglucanase I. Eur. J. Biochem. 266:327-334. http://dx.doi.org/10.1046/j.1432-1327.1999.00853.x.
-
(1999)
Eur. J. Biochem.
, vol.266
, pp. 327-334
-
-
Valjamae, P.1
Sild, V.2
Nutt, A.3
Pettersson, G.4
Johansson, G.5
-
10
-
-
0030065736
-
Identification of two functionally different classes of exocellulases
-
Barr BK, Hsieh YL, Ganem B, Wilson DB. 1996. Identification of two functionally different classes of exocellulases. Biochemistry 35:586-592. http://dx.doi.org/10.1021/bi9520388.
-
(1996)
Biochemistry
, vol.35
, pp. 586-592
-
-
Barr, B.K.1
Hsieh, Y.L.2
Ganem, B.3
Wilson, D.B.4
-
11
-
-
84954875039
-
The 1.4-β-glucan cellobiohydrolases of Trichoderma reesei QM 9414A new type of cellulolytic synergism. FEBS Lett.
-
Fagerstam L, Pettersson L. 1980. The 1.4-β-glucan cellobiohydrolases of Trichoderma reesei QM 9414A new type of cellulolytic synergism. FEBS Lett. 119:97-100. http://dx.doi.org/10.1016/0014-5793(80)81006-4.
-
(1980)
, vol.119
, pp. 97-100
-
-
Fagerstam, L.1
Pettersson, L.2
-
12
-
-
77950948151
-
Stimulation of lignocellulosic biomass hydrolysis by proteins of glycoside hydrolase family 61: structure and function of a large,enigmatic family
-
Harris PV, Welner D, McFarland KC, Re E, Navarro Poulsen JC, Brown K, Salbo R, Ding H, Vlasenko E, Merino S, Xu F, Cherry J, Larsen S, Lo Leggio L. 2010. Stimulation of lignocellulosic biomass hydrolysis by proteins of glycoside hydrolase family 61: structure and function of a large,enigmatic family. Biochemistry 49:3305-3316. http://dx.doi.org/10.1021/bi100009p.
-
(2010)
Biochemistry
, vol.49
, pp. 3305-3316
-
-
Harris, P.V.1
Welner, D.2
McFarland, K.C.3
Re, E.4
Navarro Poulsen, J.C.5
Brown, K.6
Salbo, R.7
Ding, H.8
Vlasenko, E.9
Merino, S.10
Xu, F.11
Cherry, J.12
Larsen, S.13
Lo Leggio, L.14
-
13
-
-
48649104231
-
Regulation and characterization of Thermobifida fusca carbohydrate-binding module proteins E7 and E8
-
Moser F, Irwin D, Chen S, Wilson DB. 2008. Regulation and characterization of Thermobifida fusca carbohydrate-binding module proteins E7 and E8. Biotechnol. Bioeng. 100:1066-1077. http://dx.doi.org/10.1002/bit.21856.
-
(2008)
Biotechnol. Bioeng.
, vol.100
, pp. 1066-1077
-
-
Moser, F.1
Irwin, D.2
Chen, S.3
Wilson, D.B.4
-
14
-
-
77957727454
-
An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides
-
Vaaje-Kolstad G, Westereng B, Horn SJ, Liu Z, Zhai H, Sorlie M, Eijsink VG. 2010. An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides. Science 330:219-222. http://dx.doi.org/10.1126/science.1192231.
-
(2010)
Science
, vol.330
, pp. 219-222
-
-
Vaaje-Kolstad, G.1
Westereng, B.2
Horn, S.J.3
Liu, Z.4
Zhai, H.5
Sorlie, M.6
Eijsink, V.G.7
-
15
-
-
80052514287
-
Traffic jams reduce hydrolytic efficiency of cellulase on cellulose surface
-
Igarashi K, Uchihashi T, Koivula A, Wada M, Kimura S, Okamoto T, Penttila M, Ando T, Samejima M. 2011. Traffic jams reduce hydrolytic efficiency of cellulase on cellulose surface. Science 333:1279-1282. http://dx.doi.org/10.1126/science.1208386.
-
(2011)
Science
, vol.333
, pp. 1279-1282
-
-
Igarashi, K.1
Uchihashi, T.2
Koivula, A.3
Wada, M.4
Kimura, S.5
Okamoto, T.6
Penttila, M.7
Ando, T.8
Samejima, M.9
-
16
-
-
0032522362
-
The initial kinetics of hydrolysis by cellobiohydrolases I and II is consistent with a cellulose surface-erosion model
-
Valjamae P, Sild V, Pettersson G, Johansson G. 1998. The initial kinetics of hydrolysis by cellobiohydrolases I and II is consistent with a cellulose surface-erosion model. Eur. J. Biochem. 253:469-475. http://dx.doi.org/10.1046/j.1432-1327.1998.2530469.x.
-
(1998)
Eur. J. Biochem.
, vol.253
, pp. 469-475
-
-
Valjamae, P.1
Sild, V.2
Pettersson, G.3
Johansson, G.4
-
17
-
-
0031897880
-
Roles of the catalytic domain and two cellulose binding domains of Thermomonospora fusca E4 in cellulose hydrolysis
-
Irwin D, Shin DH, Zhang S, Barr BK, Sakon J, Karplus PA, Wilson DB. 1998. Roles of the catalytic domain and two cellulose binding domains of Thermomonospora fusca E4 in cellulose hydrolysis. J. Bacteriol. 180: 1709-1714.
-
(1998)
J. Bacteriol.
, vol.180
, pp. 1709-1714
-
-
Irwin, D.1
Shin, D.H.2
Zhang, S.3
Barr, B.K.4
Sakon, J.5
Karplus, P.A.6
Wilson, D.B.7
-
18
-
-
0030759920
-
Structure and mechanism of endo/exocellulase E4 from Thermomonospora fusca
-
Sakon J, Irwin D, Wilson DB, Karplus PA. 1997. Structure and mechanism of endo/exocellulase E4 from Thermomonospora fusca. Nat. Struct. Biol. 4:810-818. http://dx.doi.org/10.1038/nsb1097-810.
-
(1997)
Nat. Struct. Biol.
, vol.4
, pp. 810-818
-
-
Sakon, J.1
Irwin, D.2
Wilson, D.B.3
Karplus, P.A.4
-
19
-
-
0033869510
-
Cloning, expression and characterization of a family 48 exocellulase, Cel48A, from Thermobifida fusca
-
Irwin DC, Zhang S, Wilson DB. 2000. Cloning, expression and characterization of a family 48 exocellulase, Cel48A, from Thermobifida fusca. Eur. J. Biochem. 267:4988-4997. http://dx.doi.org/10.1046/j.1432-1327.2000.01546.x.
-
(2000)
Eur. J. Biochem.
, vol.267
, pp. 4988-4997
-
-
Irwin, D.C.1
Zhang, S.2
Wilson, D.B.3
-
20
-
-
0032465374
-
Regulation of biosynthesis of individual cellulases in Thermomonospora fusca
-
Spiridonov NA, Wilson DB. 1998. Regulation of biosynthesis of individual cellulases in Thermomonospora fusca. J. Bacteriol. 180:3529-3532.
-
(1998)
J. Bacteriol.
, vol.180
, pp. 3529-3532
-
-
Spiridonov, N.A.1
Wilson, D.B.2
-
21
-
-
84882710777
-
Two-parameter kinetic model based on a time-dependent activity coefficient accurately describes enzymatic cellulose digestion
-
Kostylev M, Wilson D. 2013. Two-parameter kinetic model based on a time-dependent activity coefficient accurately describes enzymatic cellulose digestion. Biochemistry 52:5656-5664. http://dx.doi.org/10.1021/bi400358v.
-
(2013)
Biochemistry
, vol.52
, pp. 5656-5664
-
-
Kostylev, M.1
Wilson, D.2
-
22
-
-
84861552894
-
Pre-steady-state kinetics for hydrolysis of insoluble cellulose by cellobiohydrolase Cel7A
-
Cruys-Bagger N, Elmerdahl J, Praestgaard E, Tatsumi H, Spodsberg N, Borch K, Westh P. 2012. Pre-steady-state kinetics for hydrolysis of insoluble cellulose by cellobiohydrolase Cel7A. J. Biol. Chem. 287:18451-18458. http://dx.doi.org/10.1074/jbc.M111.334946.
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 18451-18458
-
-
Cruys-Bagger, N.1
Elmerdahl, J.2
Praestgaard, E.3
Tatsumi, H.4
Spodsberg, N.5
Borch, K.6
Westh, P.7
-
23
-
-
79955071381
-
A kinetic model for the burst phase of processive cellulases
-
Praestgaard E, Elmerdahl J, Murphy L, Nymand S, McFarland KC, Borch K, Westh P. 2011. A kinetic model for the burst phase of processive cellulases. FEBS J. 278:1547-1560. http://dx.doi.org/10.1111/j.1742-4658.2011.08078.x.
-
(2011)
FEBS J.
, vol.278
, pp. 1547-1560
-
-
Praestgaard, E.1
Elmerdahl, J.2
Murphy, L.3
Nymand, S.4
McFarland, K.C.5
Borch, K.6
Westh, P.7
-
25
-
-
84871553240
-
Dissecting and reconstructing synergism: in situ visualization of cooperativity among cellulases
-
Ganner T, Bubner P, Eibinger M, Mayrhofer C, Plank H, Nidetzky B. 2012. Dissecting and reconstructing synergism: in situ visualization of cooperativity among cellulases. J. Biol. Chem. 287:43215-43222. http://dx.doi.org/10.1074/jbc.M112.419952.
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 43215-43222
-
-
Ganner, T.1
Bubner, P.2
Eibinger, M.3
Mayrhofer, C.4
Plank, H.5
Nidetzky, B.6
-
26
-
-
32444433995
-
Effect of cellulase mole fraction and cellulose recalcitrance on synergism in cellulose hydrolysis and binding
-
Jeoh T, Wilson DB, Walker LP. 2006. Effect of cellulase mole fraction and cellulose recalcitrance on synergism in cellulose hydrolysis and binding. Biotechnol. Prog. 22:270-277. http://dx.doi.org/10.1021/bp050266f.
-
(2006)
Biotechnol. Prog.
, vol.22
, pp. 270-277
-
-
Jeoh, T.1
Wilson, D.B.2
Walker, L.P.3
-
27
-
-
0028152402
-
Cellulose hydrolysis by the cellulases from Trichoderma reesei: adsorptions of two cellobiohydrolases, two endocellulases and their core proteins on filter paper and their relation to hydrolysis
-
Nidetzky B, Steiner W, Claeyssens M. 1994. Cellulose hydrolysis by the cellulases from Trichoderma reesei: adsorptions of two cellobiohydrolases, two endocellulases and their core proteins on filter paper and their relation to hydrolysis. Biochem. J. 303(Pt 3):817-823.
-
(1994)
Biochem. J.
, vol.303
, Issue.PART 3
, pp. 817-823
-
-
Nidetzky, B.1
Steiner, W.2
Claeyssens, M.3
-
28
-
-
59649114182
-
Interaction between the CBM of Cel9A from Thermobifida fusca and cellulose fibers
-
Oliveira OV, Freitas LCG, Straatsma TP, Lins RD. 2009. Interaction between the CBM of Cel9A from Thermobifida fusca and cellulose fibers. J. Mol. Recognit. 22:38-45. http://dx.doi.org/10.1002/jmr.925.
-
(2009)
J. Mol. Recognit.
, vol.22
, pp. 38-45
-
-
Oliveira, O.V.1
Freitas, L.C.G.2
Straatsma, T.P.3
Lins, R.D.4
-
29
-
-
0000551058
-
The action of 1,4-beta-D-glucan cellobiohydrolase on Valonia cellulose microcrystals. An electron microscopy study
-
Chanzy H, Henrissat B, Vuong R, Schulein M. 1983. The action of 1,4-beta-D-glucan cellobiohydrolase on Valonia cellulose microcrystals. An electron microscopy study. FEBS Lett. 153:113-118.
-
(1983)
FEBS Lett.
, vol.153
, pp. 113-118
-
-
Chanzy, H.1
Henrissat, B.2
Vuong, R.3
Schulein, M.4
-
30
-
-
77952511855
-
Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance
-
Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK. 2010. Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol. Biofuels 3:10. http://dx.doi.org/10.1186/1754-6834-3-10.
-
(2010)
Biotechnol. Biofuels
, vol.3
, pp. 10
-
-
Park, S.1
Baker, J.O.2
Himmel, M.E.3
Parilla, P.A.4
Johnson, D.K.5
|