메뉴 건너뛰기




Volumn 62, Issue 1, 2014, Pages 183-195

Convergence and stability of iteratively re-weighted least squares algorithms

Author keywords

Compressive sampling; constrained maximum likelihood estimation; expectation maximization algorithms; Gaussian scale mixtures; mathematical programming

Indexed keywords

COMPRESSIVE SAMPLING; CONSTRAINED MAXIMUM LIKELIHOOD ESTIMATIONS; CONVERGENCE AND STABILITY; EXPECTATION-MAXIMIZATION ALGORITHMS; GAUSSIAN SCALE MIXTURES; RE-WEIGHTED LEAST SQUARES; SPARSE SIGNAL RECOVERIES; THEORETICAL GUARANTEES;

EID: 84890945200     PISSN: 1053587X     EISSN: None     Source Type: Journal    
DOI: 10.1109/TSP.2013.2287685     Document Type: Article
Times cited : (79)

References (33)
  • 1
    • 33645712892 scopus 로고    scopus 로고
    • Compressed sensing
    • Apr
    • D. L. Donoho, Compressed sensing, IEEE Trans. Inf. Theory, vol. 52, pp. 1289-1306, Apr. 2006.
    • (2006) IEEE Trans. Inf. Theory , vol.52 , pp. 1289-1306
    • Donoho, D.L.1
  • 2
    • 59749104367 scopus 로고    scopus 로고
    • From sparse solutions of systems of equations to sparse modeling of signals and images
    • A. Bruckstein, D. Donoho, and M. Elad, From sparse solutions of systems of equations to sparse modeling of signals and images, SIAM Rev., vol. 51, no. 1, pp. 34-81, 2009.
    • (2009) SIAM Rev. , vol.51 , Issue.1 , pp. 34-81
    • Bruckstein, A.1    Donoho, D.2    Elad, M.3
  • 3
    • 77952743265 scopus 로고    scopus 로고
    • Compressed channel sensing: A new approach to estimating sparse multipath channels
    • W. U. Bajwa, J. Haupt, A. M. Sayeed, and R. Nowak, Compressed channel sensing: A new approach to estimating sparse multipath channels, Proc. IEEE, vol. 98, no. 6, pp. 1058-1076, 2010.
    • (2010) Proc. IEEE , vol.98 , Issue.6 , pp. 1058-1076
    • Bajwa, W.U.1    Haupt, J.2    Sayeed, A.M.3    Nowak, R.4
  • 5
    • 36849088522 scopus 로고    scopus 로고
    • Sparse MRI: The application of compressed sensing for rapid MR imaging
    • DOI 10.1002/mrm.21391
    • M. Lustig, D. Donoho, and J. M. Pauly, Sparse MRI: The application of compressed sensing for rapid MR imaging, Magn. Reson. Med., vol. 58, no. 6, pp. 1182-1195, 2007. (Pubitemid 350234205)
    • (2007) Magnetic Resonance in Medicine , vol.58 , Issue.6 , pp. 1182-1195
    • Lustig, M.1    Donoho, D.2    Pauly, J.M.3
  • 6
    • 84863115252 scopus 로고    scopus 로고
    • Efficient seismic forward modeling using simultaneous
    • random sources and sparsity
    • R. N. Neelamani, C. E. Krohn, J. R. Krebs, J. K. Romberg, M. Deffenbaugh, and J. E. Anderson, Efficient seismic forward modeling using simultaneous random sources and sparsity, Geophys., vol. 75, no. 6, pp. WB15-WB27, 2010.
    • (2010) Geophys. , vol.75 , Issue.6 , pp. 15-27
    • Neelamani, R.N.1    Krohn, C.E.2    Krebs, J.R.3    Romberg, J.K.4    Deffenbaugh, M.5    Anderson, J.E.6
  • 8
    • 0031102203 scopus 로고    scopus 로고
    • Sparse signal reconstruction from limited data using FOCUSS: A re-weighted minimum norm algorithm
    • I. Gorodnitsky and B. D. Rao, Sparse signal reconstruction from limited data using FOCUSS: a recursive weighted norm minimization algorithm, IEEE Trans. Signal Process., vol. 45, no. 3, pp. 600-616, 1997. (Pubitemid 127765947)
    • (1997) IEEE Transactions on Signal Processing , vol.45 , Issue.3 , pp. 600-616
    • Gorodnitsky, I.F.1    Rao, B.D.2
  • 9
    • 33144483155 scopus 로고    scopus 로고
    • Stable recovery of sparse overcomplete representations in the presence of noise
    • DOI 10.1109/TIT.2005.860430
    • D. L. Donoho, M. Elad, and V. N. Temlyakov, Stable recovery of sparse overcomplete representations in the presence of noise, IEEE Trans. Inf. Theory, vol. 52, pp. 6-18, Jan. 2006. (Pubitemid 43263116)
    • (2006) IEEE Transactions on Information Theory , vol.52 , Issue.1 , pp. 6-18
    • Donoho, D.L.1    Elad, M.2    Temlyakov, V.N.3
  • 12
    • 70349696388 scopus 로고    scopus 로고
    • Iteratively re-weighted least squares for sparse signal reconstruction from noisy measurements
    • Mar.
    • R. E. Carrillo and K. Barner, Iteratively re-weighted least squares for sparse signal reconstruction from noisy measurements, in Proc. 43rd Annu. Conf. Inf. Sci. Syst. (CISS), Mar. 2009, pp. 448-453.
    • (2009) Proc. 43rd Annu. Conf. Inf. Sci. Syst. (CISS) , pp. 448-453
    • Carrillo, R.E.1    Barner, K.2
  • 13
    • 81255195621 scopus 로고    scopus 로고
    • On the performance of sparse recovery via-minimization
    • Nov.
    • W.Wang,W. Xu, and A. Tang, On the performance of sparse recovery via-minimization, IEEE Trans. Inf. Theory, vol. 57, pp. 7255-7278, Nov. 2011.
    • (2011) IEEE Trans. Inf. Theory , vol.57 , pp. 7255-7278
    • Wang, W.1    Xu, W.2    Tang, A.3
  • 14
    • 77949704355 scopus 로고    scopus 로고
    • Iteratively reweighted least squares minimization for sparse recovery
    • I. Daubechies, R. DeVore,M. Fornasier, and C. S. Güntürk, Iteratively reweighted least squares minimization for sparse recovery, Comm. Pure Appl. Math., vol. 63, no. 1, pp. 1-38, 2010.
    • (2010) Comm. Pure Appl. Math. , vol.63 , Issue.1 , pp. 1-38
    • Daubechies, I.1    Devorem. Fornasier, R.2    Güntürk, C.S.3
  • 15
    • 84890940494 scopus 로고    scopus 로고
    • Regularization of linear systems with sparsity constraints with applications to large scale inverse problems
    • Princeton Univ., Princeton, NJ, USA
    • S. Voronin, Regularization of linear systems with sparsity constraints with applications to large scale inverse problems, Ph.D. dissertation, Princeton Univ., Princeton, NJ, USA, 2012.
    • (2012) Ph.D. Dissertation
    • Voronin, S.1
  • 17
    • 0000217030 scopus 로고
    • Normal/independent distributions and their applications in robust regression
    • K. Lange and J. S. Sinsheimer, Normal/independent distributions and their applications in robust regression, J. Comput. Graph. Statist., vol. 2, no. 2, pp. 175-198, 1993.
    • (1993) J. Comput. Graph. Statist. , vol.2 , Issue.2 , pp. 175-198
    • Lange, K.1    Sinsheimer, J.S.2
  • 18
    • 0040618942 scopus 로고
    • Iteratively reweighted least squares for linear regression when errors are normal/independent distributed
    • P. R. Krishnaiah, Ed. Amsterdam, The Netherlands: Elsevier Science
    • A. P. Dempster, N. M. Laird, and D. B. Rubin, Iteratively reweighted least squares for linear regression when errors are normal/independent distributed, in Multivariate Analysis V, P. R. Krishnaiah, Ed. Amsterdam, The Netherlands: Elsevier Science, 1980, pp. 35-57.
    • (1980) Multivariate Analysis v , pp. 35-57
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 19
  • 22
    • 1342322973 scopus 로고    scopus 로고
    • New York NY USA: Springer
    • K. Lange, Optimization. New York, NY, USA: Springer, 2004.
    • (2004) Optimization
    • Lange, K.1
  • 23
    • 0001678475 scopus 로고
    • Quadratically constrained least squares and quadratic problems
    • G. H. Golub and U. v. Matt, Quadratically constrained least squares and quadratic problems, Numer. Math., vol. 59, no. 1, pp. 561-580, 1992.
    • (1992) Numer. Math. , vol.59 , Issue.1 , pp. 561-580
    • Golub, G.H.1    Matt, U.V.2
  • 24
    • 0002210265 scopus 로고
    • On the convergence properties of the em algorithm
    • C. F. J. Wu, On the convergence properties of the EM algorithm, Ann. Statist., vol. 11, no. 1, pp. 95-103, 1983.
    • (1983) Ann. Statist. , vol.11 , Issue.1 , pp. 95-103
    • Wu, C.F.J.1
  • 26
    • 0033260540 scopus 로고    scopus 로고
    • Convergence properties of the em algorithm in constrained parameter spaces
    • D. Nettleton, Convergence properties of the EM algorithm in constrained parameter spaces, Can. J. Stat./La Revue Canadienne de Statistique, vol. 27, no. 3, pp. 639-648, 1999.
    • (1999) Can. J. Stat./La Revue Canadienne de Statistique , vol.27 , Issue.3 , pp. 639-648
    • Nettleton, D.1
  • 28
    • 29144439194 scopus 로고    scopus 로고
    • Decoding by linear programming
    • DOI 10.1109/TIT.2005.858979
    • E. J. Candès and T. Tao, Decoding by linear programming, IEEE Trans. Inf. Theory, vol. 51, pp. 4203-4215, Dec. 2005. (Pubitemid 41800353)
    • (2005) IEEE Transactions on Information Theory , vol.51 , Issue.12 , pp. 4203-4215
    • Candes, E.J.1    Tao, T.2
  • 29
    • 80052879453 scopus 로고    scopus 로고
    • Sparse approximation property and stable recovery of sparse signals from noisy measurements
    • Q. Sun, Sparse approximation property and stable recovery of sparse signals from noisy measurements, IEEE Trans. Signal Process., vol. 59, no. 10, pp. 5086-5090, 2011.
    • IEEE Trans. Signal Process. , vol.59 , Issue.10 , pp. 5086-5090
    • Sun, Q.1
  • 31
  • 32
    • 57349174008 scopus 로고    scopus 로고
    • Enhancing sparsity by reweighted minimization
    • E. J. Candes, M. B. Wakin, and S. P. Boyd, Enhancing sparsity by reweighted minimization, J. Fourier Anal. Appl., vol. 14, no. 5-6, pp. 877-905, 2008.
    • (2008) J. Fourier Anal. Appl. , vol.14 , Issue.5-6 , pp. 877-905
    • Candes, E.J.1    Wakin, M.B.2    Boyd, S.P.3
  • 33
    • 33745604236 scopus 로고    scopus 로고
    • Stable signal recovery from incomplete and inaccurate measurements
    • DOI 10.1002/cpa.20124
    • E. J. Candès, J. Romberg, and T. Tao, Stable signal recovery for incomplete and inaccurate measurements, Commun. Pure Appl. Math, vol. 59, pp. 1207-1223, Aug. 2006. (Pubitemid 43988295)
    • (2006) Communications on Pure and Applied Mathematics , vol.59 , Issue.8 , pp. 1207-1223
    • Candes, E.J.1    Romberg, J.K.2    Tao, T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.