-
1
-
-
0038076030
-
A novel coronavirus associated with severe acute respiratory syndrome
-
Ksiazek TG, Erdman D, Goldsmith CS, Zaki SR, Peret T, Emery S, Tong S, Urbani C, Comer JA, Lim W, Rollin PE, Dowell SF, Ling AE, Humphrey CD, Shieh WJ, Guarner J, Paddock CD, Rota P, Fields B, DeRisi J, Yang JY, Cox N, Hughes JM, LeDuc JW, Bellini WJ, Anderson LJ. 2003. A novel coronavirus associated with severe acute respiratory syndrome. N. Engl. J. Med. 348:1953-1966. http://dx.doi.org/10.1056/NEJMoa030781.
-
(2003)
N. Engl. J. Med.
, vol.348
, pp. 1953-1966
-
-
Ksiazek, T.G.1
Erdman, D.2
Goldsmith, C.S.3
Zaki, S.R.4
Peret, T.5
Emery, S.6
Tong, S.7
Urbani, C.8
Comer, J.A.9
Lim, W.10
Rollin, P.E.11
Dowell, S.F.12
Ling, A.E.13
Humphrey, C.D.14
Shieh, W.J.15
Guarner, J.16
Paddock, C.D.17
Rota, P.18
Fields, B.19
DeRisi, J.20
Yang, J.Y.21
Cox, N.22
Hughes, J.M.23
LeDuc, J.W.24
Bellini, W.J.25
Anderson, L.J.26
more..
-
2
-
-
0014184908
-
Growth in suckling-mouse brain of "IBV-like" viruses from patients with upper respiratory tract disease
-
McIntosh K, Becker WB, Chanock RM. 1967. Growth in suckling-mouse brain of "IBV-like" viruses from patients with upper respiratory tract disease. Proc. Natl. Acad. Sci. U. S. A. 58:2268-2273. http://dx.doi.org/10 .1073/pnas.58.6.2268.
-
(1967)
Proc. Natl. Acad. Sci. U. S. A.
, vol.58
, pp. 2268-2273
-
-
McIntosh, K.1
Becker, W.B.2
Chanock, R.M.3
-
3
-
-
33846357501
-
An outbreak of human coronavirus OC43 infection and serological cross-reactivity with SARS coronavirus
-
Patrick DM, Petric M, Skowronski DM, Guasparini R, Booth TF, Krajden M, McGeer P, Bastien N, Gustafson L, Dubord J, Macdonald D, David ST, Srour LF, Parker R, Andonov A, Isaac-Renton J, Loewen N, McNabb G, McNabb A, Goh SH, Henwick S, Astell C, Guo JP, Drebot M, Tellier R, Plummer F, Brunham RC. 2006. An outbreak of human coronavirus OC43 infection and serological cross-reactivity with SARS coronavirus. Can. J. Infect. Dis. Med. Microbiol. 17:330-336.
-
(2006)
Can. J. Infect. Dis. Med. Microbiol.
, vol.17
, pp. 330-336
-
-
Patrick, D.M.1
Petric, M.2
Skowronski, D.M.3
Guasparini, R.4
Booth, T.F.5
Krajden, M.6
McGeer, P.7
Bastien, N.8
Gustafson, L.9
Dubord, J.10
Macdonald, D.11
David, S.T.12
Srour, L.F.13
Parker, R.14
Andonov, A.15
Isaac-Renton, J.16
Loewen, N.17
McNabb, G.18
McNabb, A.19
Goh, S.H.20
Henwick, S.21
Astell, C.22
Guo, J.P.23
Drebot, M.24
Tellier, R.25
Plummer, F.26
Brunham, R.C.27
more..
-
4
-
-
0037445549
-
An outbreak of coronavirus OC43 respiratory infection in Normandy, France
-
Vabret A, Mourez T, Gouarin S, Petitjean J, Freymuth F. 2003. An outbreak of coronavirus OC43 respiratory infection in Normandy, France. Clin. Infect. Dis. 36:985-989. http://dx.doi.org/10.1086/374222.
-
(2003)
Clin. Infect. Dis.
, vol.36
, pp. 985-989
-
-
Vabret, A.1
Mourez, T.2
Gouarin, S.3
Petitjean, J.4
Freymuth, F.5
-
5
-
-
15944408404
-
Human coronavirus OC43 causes influenza-like illness in residents and staff of aged-care facilities in Melbourne, Australia
-
Birch CJ, Clothier HJ, Seccull A, Tran T, Catton MC, Lambert SB, Druce JD. 2005. Human coronavirus OC43 causes influenza-like illness in residents and staff of aged-care facilities in Melbourne, Australia. Epidemiol. Infect. 133:273-277. http://dx.doi.org/10.1017/S0950268804003346.
-
(2005)
Epidemiol. Infect.
, vol.133
, pp. 273-277
-
-
Birch, C.J.1
Clothier, H.J.2
Seccull, A.3
Tran, T.4
Catton, M.C.5
Lambert, S.B.6
Druce, J.D.7
-
6
-
-
0034751088
-
The coronavirus infectious bronchitis virus nucleoprotein localizes to the nucleolus
-
Hiscox JA, Wurm T, Wilson L, Britton P, Cavanagh D, Brooks G. 2001. The coronavirus infectious bronchitis virus nucleoprotein localizes to the nucleolus. J. Virol. 75:506-512. http://dx.doi.org/10.1128/JVI.75.1.506-512.2001.
-
(2001)
J. Virol.
, vol.75
, pp. 506-512
-
-
Hiscox, J.A.1
Wurm, T.2
Wilson, L.3
Britton, P.4
Cavanagh, D.5
Brooks, G.6
-
7
-
-
0034849496
-
Localization to the nucleolus is a common feature of coronavirus nucleoproteins, and the protein may disrupt host cell division
-
Wurm T, Chen H, Hodgson T, Britton P, Brooks G, Hiscox JA. 2001. Localization to the nucleolus is a common feature of coronavirus nucleoproteins, and the protein may disrupt host cell division. J. Virol. 75:9345-9356. http://dx.doi.org/10.1128/JVI.75.19.9345-9356.2001.
-
(2001)
J. Virol.
, vol.75
, pp. 9345-9356
-
-
Wurm, T.1
Chen, H.2
Hodgson, T.3
Britton, P.4
Brooks, G.5
Hiscox, J.A.6
-
8
-
-
0032842312
-
The localization of porcine reproductive and respiratory syndrome virus nucleocapsid protein to the nucleolus of infected cells and identification of a potential nucleolar localization signal sequence
-
Rowland RR, Kervin R, Kuckleburg C, Sperlich A, Benfield DA. 1999. The localization of porcine reproductive and respiratory syndrome virus nucleocapsid protein to the nucleolus of infected cells and identification of a potential nucleolar localization signal sequence. Virus Res. 64:1-12. http://dx.doi.org/10.1016/S0168-1702(99)00048-9.
-
(1999)
Virus Res.
, vol.64
, pp. 1-12
-
-
Rowland, R.R.1
Kervin, R.2
Kuckleburg, C.3
Sperlich, A.4
Benfield, D.A.5
-
9
-
-
0036238652
-
Interaction of the coronavirus nucleoprotein with nucleolar antigens and the host cell
-
Chen H, Wurm T, Britton P, Brooks G, Hiscox JA. 2002. Interaction of the coronavirus nucleoprotein with nucleolar antigens and the host cell. J. Virol. 76:5233-5250. http://dx.doi.org/10.1128/JVI.76.10.5233-5250.2002.
-
(2002)
J. Virol.
, vol.76
, pp. 5233-5250
-
-
Chen, H.1
Wurm, T.2
Britton, P.3
Brooks, G.4
Hiscox, J.A.5
-
10
-
-
41249096923
-
Severe acute respiratory syndrome-associated coronavirus nucleocapsid protein interacts with Smad3 and modulates transforming growth factor-beta signaling
-
Zhao X, Nicholls JM, Chen YG. 2008. Severe acute respiratory syndrome-associated coronavirus nucleocapsid protein interacts with Smad3 and modulates transforming growth factor-beta signaling. J. Biol. Chem. 283:3272-3280. http://dx.doi.org/10.1074/jbc.M708033200.
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 3272-3280
-
-
Zhao, X.1
Nicholls, J.M.2
Chen, Y.G.3
-
11
-
-
4344612246
-
Nucleocapsid protein of SARS coronavirus tightly binds to human cyclophilin A
-
Luo C, Luo H, Zheng S, Gui C, Yue L, Yu C, Sun T, He P, Chen J, Shen J, Luo X, Li Y, Liu H, Bai D, Shen J, Yang Y, Li F, Zuo J, Hilgenfeld R, Pei G, Chen K, Shen X, Jiang H. 2004. Nucleocapsid protein of SARS coronavirus tightly binds to human cyclophilin A. Biochem. Biophys. Res. Commun. 321:557-565. http://dx.doi.org/10.1016/j.bbrc.2004.07.003.
-
(2004)
Biochem. Biophys. Res. Commun.
, vol.321
, pp. 557-565
-
-
Luo, C.1
Luo, H.2
Zheng, S.3
Gui, C.4
Yue, L.5
Yu, C.6
Sun, T.7
He, P.8
Chen, J.9
Shen, J.10
Luo, X.11
Li, Y.12
Liu, H.13
Bai, D.14
Shen, J.15
Yang, Y.16
Li, F.17
Zuo, J.18
Hilgenfeld, R.19
Pei, G.20
Chen, K.21
Shen, X.22
Jiang, H.23
more..
-
12
-
-
33751538820
-
Coronavirus nucleocapsid protein is an RNA chaperone
-
Zuniga S, Sola I, Moreno JL, Sabella P, Plana-Duran J, Enjuanes L. 2007. Coronavirus nucleocapsid protein is an RNA chaperone. Virology 357:215-227. http://dx.doi.org/10.1016/j.virol.2006.07.046.
-
(2007)
Virology
, vol.357
, pp. 215-227
-
-
Zuniga, S.1
Sola, I.2
Moreno, J.L.3
Sabella, P.4
Plana-Duran, J.5
Enjuanes, L.6
-
13
-
-
40849123994
-
The nucleocapsid protein of SARS-associated coronavirus inhibits B23 phosphorylation
-
Zeng Y, Ye L, Zhu S, Zheng H, Zhao P, Cai W, Su L, She Y, Wu Z. 2008. The nucleocapsid protein of SARS-associated coronavirus inhibits B23 phosphorylation. Biochem. Biophys. Res. Commun. 369:287-291. http://dx.doi.org/10.1016/j.bbrc.2008.01.096.
-
(2008)
Biochem. Biophys. Res. Commun.
, vol.369
, pp. 287-291
-
-
Zeng, Y.1
Ye, L.2
Zhu, S.3
Zheng, H.4
Zhao, P.5
Cai, W.6
Su, L.7
She, Y.8
Wu, Z.9
-
14
-
-
34547697435
-
Nucleocapsid protein of SARS-CoV activates interleukin-6 expression through cellular transcription factor NF-kappaB
-
Zhang X, Wu K, Wang D, Yue X, Song D, Zhu Y, Wu J. 2007. Nucleocapsid protein of SARS-CoV activates interleukin-6 expression through cellular transcription factor NF-kappaB. Virology 365:324-335. http://dx.doi.org/10.1016/j.virol.2007.04.009.
-
(2007)
Virology
, vol.365
, pp. 324-335
-
-
Zhang, X.1
Wu, K.2
Wang, D.3
Yue, X.4
Song, D.5
Zhu, Y.6
Wu, J.7
-
15
-
-
26944473682
-
Activation of NF-kappaB by the full-length nucleocapsid protein of the SARS coronavirus
-
Liao QJ, Ye LB, Timani KA, Zeng YC, She YL, Ye L, Wu ZH. 2005. Activation of NF-kappaB by the full-length nucleocapsid protein of the SARS coronavirus. Acta Biochim. Biophys. Sin. 37:607-612. http://dx.doi .org/10.1111/j.1745-7270.2005.00082.x.
-
(2005)
Acta Biochim. Biophys. Sin.
, vol.37
, pp. 607-612
-
-
Liao, Q.J.1
Ye, L.B.2
Timani, K.A.3
Zeng, Y.C.4
She, Y.L.5
Ye, L.6
Wu, Z.H.7
-
16
-
-
33846104528
-
Severe acute respiratory syndrome coronavirus open reading frame (ORF) 3b, ORF 6, and nucleocapsid proteins function as interferon antagonists
-
Kopecky-Bromberg SA, Martinez-Sobrido L, Frieman M, Baric RA, Palese P. 2007. Severe acute respiratory syndrome coronavirus open reading frame (ORF) 3b, ORF 6, and nucleocapsid proteins function as interferon antagonists. J. Virol. 81:548-557. http://dx.doi.org/10.1128/JVI .01782-06.
-
(2007)
J. Virol.
, vol.81
, pp. 548-557
-
-
Kopecky-Bromberg, S.A.1
Martinez-Sobrido, L.2
Frieman, M.3
Baric, R.A.4
Palese, P.5
-
17
-
-
4444376712
-
Signaling to NF-kappaB
-
Hayden MS, Ghosh S. 2004. Signaling to NF-kappaB. Genes Dev. 18: 2195-2224. http://dx.doi.org/10.1101/gad.1228704.
-
(2004)
Genes Dev.
, vol.18
, pp. 2195-2224
-
-
Hayden, M.S.1
Ghosh, S.2
-
18
-
-
33845768987
-
Integrating cell-signalling pathways with NF-kappaB and IKK function
-
Perkins ND. 2007. Integrating cell-signalling pathways with NF-kappaB and IKK function. Nat. Rev. Mol. Cell Biol. 8:49-62. http://dx.doi.org/10 .1038/nrm2083.
-
(2007)
Nat. Rev. Mol. Cell Biol.
, vol.8
, pp. 49-62
-
-
Perkins, N.D.1
-
19
-
-
33646548968
-
The 20S proteasome processes NF-kappaB1 p105 into p50 in a translation-independent manner
-
Moorthy AK, Savinova OV, Ho JQ, Wang VY, Vu D, Ghosh G. 2006. The 20S proteasome processes NF-kappaB1 p105 into p50 in a translation-independent manner. EMBO J. 25:1945-1956. http://dx.doi.org/10 .1038/sj.emboj.7601081.
-
(2006)
EMBO J.
, vol.25
, pp. 1945-1956
-
-
Moorthy, A.K.1
Savinova, O.V.2
Ho, J.Q.3
Wang, V.Y.4
Vu, D.5
Ghosh, G.6
-
20
-
-
33646428140
-
Two distinct ubiquitindependent mechanisms are involved in NF-kappaB p105 proteolysis
-
Cohen S, Lahav-Baratz S, Ciechanover A. 2006. Two distinct ubiquitindependent mechanisms are involved in NF-kappaB p105 proteolysis. Biochem. Biophys. Res. Commun. 345:7-13. http://dx.doi.org/10.1016/j .bbrc.2006.04.036.
-
(2006)
Biochem. Biophys. Res. Commun.
, vol.345
, pp. 7-13
-
-
Cohen, S.1
Lahav-Baratz, S.2
Ciechanover, A.3
-
21
-
-
6344241039
-
SMRT derepression by the IkappaB kinase alpha: a prerequisite to NF-kappaB transcription and survival
-
Hoberg JE, Yeung F, Mayo MW. 2004. SMRT derepression by the IkappaB kinase alpha: a prerequisite to NF-kappaB transcription and survival. Mol. Cell 16:245-255. http://dx.doi.org/10.1016/j.molcel.2004.10.010.
-
(2004)
Mol. Cell
, vol.16
, pp. 245-255
-
-
Hoberg, J.E.1
Yeung, F.2
Mayo, M.W.3
-
22
-
-
0030988261
-
Regulation of NFKB1 proteins by the candidate oncoprotein BCL-3: generation of NFkappaB homodimers from the cytoplasmic pool of p50-p105 and nuclear translocation
-
Watanabe N, Iwamura T, Shinoda T, Fujita T. 1997. Regulation of NFKB1 proteins by the candidate oncoprotein BCL-3: generation of NFkappaB homodimers from the cytoplasmic pool of p50-p105 and nuclear translocation. EMBO J. 16:3609-3620. http://dx.doi.org/10.1093/emboj/16.12.3609.
-
(1997)
EMBO J.
, vol.16
, pp. 3609-3620
-
-
Watanabe, N.1
Iwamura, T.2
Shinoda, T.3
Fujita, T.4
-
23
-
-
14844293877
-
Positive and negative regulation of nuclear factor-kappaB-mediated transcription by IkappaB-zeta, an inducible nuclear protein
-
Motoyama M, Yamazaki S, Eto-Kimura A, Takeshige K, Muta T. 2005. Positive and negative regulation of nuclear factor-kappaB-mediated transcription by IkappaB-zeta, an inducible nuclear protein. J. Biol. Chem. 280:7444-7451. http://dx.doi.org/10.1074/jbc.M412738200.
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 7444-7451
-
-
Motoyama, M.1
Yamazaki, S.2
Eto-Kimura, A.3
Takeshige, K.4
Muta, T.5
-
24
-
-
34047248402
-
Phosphorylation of CBP by IKKalpha promotes cell growth by switching the binding preference of CBP from p53 to NF-kappaB
-
Huang WC, Ju TK, Hung MC, Chen CC. 2007. Phosphorylation of CBP by IKKalpha promotes cell growth by switching the binding preference of CBP from p53 to NF-kappaB. Mol. Cell 26:75-87. http://dx.doi.org/10 .1016/j.molcel.2007.02.019.
-
(2007)
Mol. Cell
, vol.26
, pp. 75-87
-
-
Huang, W.C.1
Ju, T.K.2
Hung, M.C.3
Chen, C.C.4
-
25
-
-
48749085156
-
Encoding NF-kappaB temporal control in response to TNF: distinct roles for the negative regulators IkappaBalpha and A20
-
Werner SL, Kearns JD, Zadorozhnaya V, Lynch C, O'Dea E, Boldin MP, Ma A, Baltimore D, Hoffmann A. 2008. Encoding NF-kappaB temporal control in response to TNF: distinct roles for the negative regulators IkappaBalpha and A20. Genes Dev. 22:2093-2101. http://dx.doi.org/10.1101/gad.1680708.
-
(2008)
Genes Dev.
, vol.22
, pp. 2093-2101
-
-
Werner, S.L.1
Kearns, J.D.2
Zadorozhnaya, V.3
Lynch, C.4
O'Dea, E.5
Boldin, M.P.6
Ma, A.7
Baltimore, D.8
Hoffmann, A.9
-
26
-
-
65249131826
-
Induction and regulatory function of miR-9 in human monocytes and neutrophils exposed to proinflammatory signals
-
Bazzoni F, Rossato M, Fabbri M, Gaudiosi D, Mirolo M, Mori L, Tamassia N, Mantovani A, Cassatella MA, Locati M. 2009. Induction and regulatory function of miR-9 in human monocytes and neutrophils exposed to proinflammatory signals. Proc. Natl. Acad. Sci. U. S. A. 106: 5282-5287. http://dx.doi.org/10.1073/pnas.0810909106.
-
(2009)
Proc. Natl. Acad. Sci. U. S. A.
, vol.106
, pp. 5282-5287
-
-
Bazzoni, F.1
Rossato, M.2
Fabbri, M.3
Gaudiosi, D.4
Mirolo, M.5
Mori, L.6
Tamassia, N.7
Mantovani, A.8
Cassatella, M.A.9
Locati, M.10
-
27
-
-
70349263692
-
MicroRNA-9 inhibits ovarian cancer cell growth through regulation of NF-kappaB1
-
Guo LM, Pu Y, Han Z, Liu T, Li YX, Liu M, Li X, Tang H. 2009. MicroRNA-9 inhibits ovarian cancer cell growth through regulation of NF-kappaB1. FEBS J. 276:5537-5546. http://dx.doi.org/10.1111/j.1742-4658.2009.07237.x.
-
(2009)
FEBS J.
, vol.276
, pp. 5537-5546
-
-
Guo, L.M.1
Pu, Y.2
Han, Z.3
Liu, T.4
Li, Y.X.5
Liu, M.6
Li, X.7
Tang, H.8
-
28
-
-
79952773453
-
Modulation of NF-kappaB signalling by microbial pathogens
-
Rahman MM, McFadden G. 2011. Modulation of NF-kappaB signalling by microbial pathogens. Nat. Rev. Microbiol. 9:291-306. http://dx.doi.org/10.1038/nrmicro2539.
-
(2011)
Nat. Rev. Microbiol.
, vol.9
, pp. 291-306
-
-
Rahman, M.M.1
McFadden, G.2
-
29
-
-
67449088510
-
Severe acute respiratory syndrome coronavirus papain-like protease ubiquitinlike domain and catalytic domain regulate antagonism of IRF3 and NFkappaB signaling
-
Frieman M, Ratia K, Johnston RE, Mesecar AD, Baric RS. 2009. Severe acute respiratory syndrome coronavirus papain-like protease ubiquitinlike domain and catalytic domain regulate antagonism of IRF3 and NFkappaB signaling. J. Virol. 83:6689-6705. http://dx.doi.org/10.1128/JVI .02220-08.
-
(2009)
J. Virol.
, vol.83
, pp. 6689-6705
-
-
Frieman, M.1
Ratia, K.2
Johnston, R.E.3
Mesecar, A.D.4
Baric, R.S.5
-
30
-
-
67349224644
-
SARS coronavirus spike protein-induced innate immune response occurs via activation of the NFLaikappaB pathway in human monocyte macrophages in vitro
-
Dosch SF, Mahajan SD, Collins AR. 2009. SARS coronavirus spike protein-induced innate immune response occurs via activation of the NFLaikappaB pathway in human monocyte macrophages in vitro. Virus Res. 142:19-27. http://dx.doi.org/10.1016/j.virusres.2009.01.005.
-
(2009)
Virus Res.
, vol.142
, pp. 19-27
-
-
Dosch, S.F.1
Mahajan, S.D.2
Collins, A.R.3
-
31
-
-
34548278414
-
The membrane protein of SARS-CoV suppresses NF-kappaB activation
-
Fang X, Gao J, Zheng H, Li B, Kong L, Zhang Y, Wang W, Zeng Y, Ye L. 2007. The membrane protein of SARS-CoV suppresses NF-kappaB activation. J. Med. Virol. 79:1431-1439. http://dx.doi.org/10.1002/jmv .20953.
-
(2007)
J. Med. Virol.
, vol.79
, pp. 1431-1439
-
-
Fang, X.1
Gao, J.2
Zheng, H.3
Li, B.4
Kong, L.5
Zhang, Y.6
Wang, W.7
Zeng, Y.8
Ye, L.9
-
32
-
-
77952572587
-
New perspectives in MicroRNA regulation of innate immunity
-
Gantier MP. 2010. New perspectives in MicroRNA regulation of innate immunity. J. Interferon Cytokine Res. 30:283-289. http://dx.doi.org/10 .1089/jir.2010.0037.
-
(2010)
J. Interferon Cytokine Res.
, vol.30
, pp. 283-289
-
-
Gantier, M.P.1
-
33
-
-
79952186298
-
MicroRNAs: the fine-tuners of Toll-like receptor signalling
-
O'Neill LA, Sheedy FJ, McCoy CE. 2011. MicroRNAs: the fine-tuners of Toll-like receptor signalling. Nat. Rev. Immunol. 11:163-175. http://dx .doi.org/10.1038/nri2957.
-
(2011)
Nat. Rev. Immunol.
, vol.11
, pp. 163-175
-
-
O'Neill, L.A.1
Sheedy, F.J.2
McCoy, C.E.3
-
34
-
-
4644309196
-
The functions of animal microRNAs
-
Ambros V. 2004. The functions of animal microRNAs. Nature 431:350-355. http://dx.doi.org/10.1038/nature02871.
-
(2004)
Nature
, vol.431
, pp. 350-355
-
-
Ambros, V.1
-
35
-
-
79958835291
-
miR-9 and let-7g enhance the sensitivity to ionizing radiation by suppression of NFkappaB1
-
Arora H, Qureshi R, Jin S, Park AK, Park WY. 2011. miR-9 and let-7g enhance the sensitivity to ionizing radiation by suppression of NFkappaB1. Exp. Mol. Med. 43:298-304. http://dx.doi.org/10.3858/emm.2011 .43.5.031.
-
(2011)
Exp. Mol. Med.
, vol.43
, pp. 298-304
-
-
Arora, H.1
Qureshi, R.2
Jin, S.3
Park, A.K.4
Park, W.Y.5
-
36
-
-
77649312099
-
Regulation of the transcription factor NF-kappaB1 by microRNA-9 in human gastric adenocarcinoma
-
Wan HY, Guo LM, Liu T, Liu M, Li X, Tang H. 2010. Regulation of the transcription factor NF-kappaB1 by microRNA-9 in human gastric adenocarcinoma. Mol. Cancer 9:16. http://dx.doi.org/10.1186/1476-4598-9-16.
-
(2010)
Mol. Cancer
, vol.9
, pp. 16
-
-
Wan, H.Y.1
Guo, L.M.2
Liu, T.3
Liu, M.4
Li, X.5
Tang, H.6
-
37
-
-
0037302253
-
Phosphorylation of rubella virus capsid regulates its RNA binding activity and virus replication
-
Law LMJ, Everitt JC, Beatch MD, Holmes CFB, Hobman TC. 2003. Phosphorylation of rubella virus capsid regulates its RNA binding activity and virus replication. J. Virol. 77:1764-1771. http://dx.doi.org/10.1128/JVI.77.3.1764-1771.2003.
-
(2003)
J. Virol.
, vol.77
, pp. 1764-1771
-
-
Law, L.M.J.1
Everitt, J.C.2
Beatch, M.D.3
Holmes, C.F.B.4
Hobman, T.C.5
-
38
-
-
33845890539
-
The mechanism by which influenza A virus nucleoprotein forms oligomers and binds RNA
-
Ye Q, Krug RM, Tao YJ. 2006. The mechanism by which influenza A virus nucleoprotein forms oligomers and binds RNA. Nature 444:1078-1082. http://dx.doi.org/10.1038/nature05379.
-
(2006)
Nature
, vol.444
, pp. 1078-1082
-
-
Ye, Q.1
Krug, R.M.2
Tao, Y.J.3
-
39
-
-
0028233530
-
Biosynthesis and biochemical properties of the hepatitis C virus core protein
-
Santolini E, Migliaccio G, La Monica N. 1994. Biosynthesis and biochemical properties of the hepatitis C virus core protein. J. Virol. 68:3631-3641.
-
(1994)
J. Virol.
, vol.68
, pp. 3631-3641
-
-
Santolini, E.1
Migliaccio, G.2
La Monica, N.3
-
40
-
-
11144227044
-
Mass spectroscopic characterization of the coronavirus infectious bronchitis virus nucleoprotein and elucidation of the role of phosphorylation in RNA binding by using surface plasmon resonance
-
Chen H, Gill A, Dove BK, Emmett SR, Kemp CF, Ritchie MA, Dee M, Hiscox JA. 2005. Mass spectroscopic characterization of the coronavirus infectious bronchitis virus nucleoprotein and elucidation of the role of phosphorylation in RNA binding by using surface plasmon resonance. J. Virol. 79:1164-1179. http://dx.doi.org/10.1128/JVI.79.2 .1164-1179.2005.
-
(2005)
J. Virol.
, vol.79
, pp. 1164-1179
-
-
Chen, H.1
Gill, A.2
Dove, B.K.3
Emmett, S.R.4
Kemp, C.F.5
Ritchie, M.A.6
Dee, M.7
Hiscox, J.A.8
-
41
-
-
0023769584
-
Specific interaction between coronavirus leader RNA and nucleocapsid protein
-
Stohlman SA, Baric RS, Nelson GN, Soe LH, Welter LM, Deans RJ. 1988. Specific interaction between coronavirus leader RNA and nucleocapsid protein. J. Virol. 62:4288-4295.
-
(1988)
J. Virol.
, vol.62
, pp. 4288-4295
-
-
Stohlman, S.A.1
Baric, R.S.2
Nelson, G.N.3
Soe, L.H.4
Welter, L.M.5
Deans, R.J.6
|