메뉴 건너뛰기




Volumn 3, Issue 16, 2013, Pages 5225-5236

Nondetection sampling bias in marked presence-only data

Author keywords

Grus americana; Inhomogeneous Poisson point process; Missing data; Nondetection; Sampling bias; Species distribution model; Whooping crane

Indexed keywords


EID: 84890882740     PISSN: None     EISSN: 20457758     Source Type: Journal    
DOI: 10.1002/ece3.887     Document Type: Article
Times cited : (28)

References (43)
  • 1
    • 84867412542 scopus 로고    scopus 로고
    • Comparative interpretation of count, presence-absence and point methods for species distribution models
    • Aarts, G., J. Fieberg, and J. Matthiopoulos. 2012. Comparative interpretation of count, presence-absence and point methods for species distribution models. Methods Ecol. Evol. 3:177-187.
    • (2012) Methods Ecol. Evol. , vol.3 , pp. 177-187
    • Aarts, G.1    Fieberg, J.2    Matthiopoulos, J.3
  • 2
    • 33748529602 scopus 로고    scopus 로고
    • Five (or so) challenges for species distribution modelling
    • Araújo, M. B., and A. Guisan. 2006. Five (or so) challenges for species distribution modelling. J. Biogeogr. 33:1677-1688.
    • (2006) J. Biogeogr. , vol.33 , pp. 1677-1688
    • Araújo, M.B.1    Guisan, A.2
  • 3
    • 84890871928 scopus 로고    scopus 로고
    • A comprehensive review of observational and site evaluation data of migrant whooping cranes in the United States, 1943-99. Available at. (accessed 17 July 2013).
    • Austin, J., and A. Richert. 2001. A comprehensive review of observational and site evaluation data of migrant whooping cranes in the United States, 1943-99. Available at http://www.npwrc.usgs.gov/resource/birds/wcdata/pdf/wcdata.pdf. (accessed 17 July 2013).
    • (2001)
    • Austin, J.1    Richert, A.2
  • 4
    • 0027881177 scopus 로고
    • Empirical models for the spatial distribution of wildlife
    • Buckland, S. T., and D. A. Elston. 1993. Empirical models for the spatial distribution of wildlife. J. Appl. Ecol. 30:478-495.
    • (1993) J. Appl. Ecol. , vol.30 , pp. 478-495
    • Buckland, S.T.1    Elston, D.A.2
  • 7
    • 84871659770 scopus 로고    scopus 로고
    • Predicting the Geographic Distribution of a Species from Presence-Only Data Subject to Detection Errors
    • Dorazio, R. 2012. Predicting the Geographic Distribution of a Species from Presence-Only Data Subject to Detection Errors. Biometrics 68:1-25.
    • (2012) Biometrics , vol.68 , pp. 1-25
    • Dorazio, R.1
  • 9
    • 34247359908 scopus 로고    scopus 로고
    • Predicting species distributions from museum and herbarium records using multiresponse models fitted with multivariate adaptive regression splines
    • Elith, J., and J. Leathwick. 2007. Predicting species distributions from museum and herbarium records using multiresponse models fitted with multivariate adaptive regression splines. Divers. Distrib. 13:265-275.
    • (2007) Divers. Distrib. , vol.13 , pp. 265-275
    • Elith, J.1    Leathwick, J.2
  • 10
    • 33645917058 scopus 로고    scopus 로고
    • Novel methods improve prediction of species' distributions from occurrence data
    • Elith, J., C. H. Graham, R. P. Anderson, M. Dudík, S. Ferrier, A. Guisan, et al. 2006. Novel methods improve prediction of species' distributions from occurrence data. Ecography, 29, 129-151.
    • (2006) Ecography , vol.29 , pp. 129-151
    • Elith, J.1    Graham, C.H.2    Anderson, R.P.3    Dudík, M.4    Ferrier, S.5    Guisan, A.6
  • 11
    • 44849118698 scopus 로고    scopus 로고
    • A working guide to boosted regression trees
    • Elith, J., J. R. Leathwick, and T. Hastie. 2008. A working guide to boosted regression trees. J. Anim. Ecol. 77:802-813.
    • (2008) J. Anim. Ecol. , vol.77 , pp. 802-813
    • Elith, J.1    Leathwick, J.R.2    Hastie, T.3
  • 12
    • 77951833469 scopus 로고    scopus 로고
    • Bayesian weight trimming for generalized linear regression models
    • Elliott, M. 2007. Bayesian weight trimming for generalized linear regression models. Surv. Methodol. 33:23-34.
    • (2007) Surv. Methodol. , vol.33 , pp. 23-34
    • Elliott, M.1
  • 13
    • 84890888563 scopus 로고    scopus 로고
    • Finite-sample equivalence in statistical models for presence only data
    • in press.
    • Fithian, W. and T. Hastie. 2013. Finite-sample equivalence in statistical models for presence only data. Ann. Appl. Stat. in press.
    • (2013) Ann. Appl. Stat.
    • Fithian, W.1    Hastie, T.2
  • 15
    • 0034610199 scopus 로고    scopus 로고
    • Predictive habitat distribution models in ecology
    • Guisan, A., and N. E. Zimmermann. 2000. Predictive habitat distribution models in ecology. Ecol. Model. 135:147-186.
    • (2000) Ecol. Model. , vol.135 , pp. 147-186
    • Guisan, A.1    Zimmermann, N.E.2
  • 16
    • 0037202446 scopus 로고    scopus 로고
    • Generalized linear and generalized additive models in studies of species distributions: setting the scene
    • Guisan, A., T. C. Edwards, and T. Hastie. 2002. Generalized linear and generalized additive models in studies of species distributions: setting the scene. Ecol. Model. 157:89-100.
    • (2002) Ecol. Model. , vol.157 , pp. 89-100
    • Guisan, A.1    Edwards, T.C.2    Hastie, T.3
  • 17
    • 84880039900 scopus 로고    scopus 로고
    • Inference from presence-only data; the ongoing controversy
    • Hastie, T., and W. Fithian. 2013. Inference from presence-only data; the ongoing controversy. Ecography 36:864-867.
    • (2013) Ecography , vol.36 , pp. 864-867
    • Hastie, T.1    Fithian, W.2
  • 19
    • 77954801383 scopus 로고    scopus 로고
    • How much can we learn about missing data?: an exploration of a clinical trial in psychiatry
    • Jackson, D., I. White, and M. Leese. 2010. How much can we learn about missing data?: an exploration of a clinical trial in psychiatry. J. Royal Statist. Soc.: Series A 173:593-612.
    • (2010) J. Royal Statist. Soc.: Series A , vol.173 , pp. 593-612
    • Jackson, D.1    White, I.2    Leese, M.3
  • 20
    • 40849114636 scopus 로고    scopus 로고
    • Sensitivity of species-distribution models to error, bias, and model design: An application to resource selection functions for woodland caribou
    • Johnson, C. J., and M. P. Gillingham. 2008. Sensitivity of species-distribution models to error, bias, and model design: An application to resource selection functions for woodland caribou. Ecol. Model. 213:143-155.
    • (2008) Ecol. Model. , vol.213 , pp. 143-155
    • Johnson, C.J.1    Gillingham, M.P.2
  • 21
    • 79952689980 scopus 로고    scopus 로고
    • Towards the modelling of true species distributions
    • Kéry, M. 2011. Towards the modelling of true species distributions. J. Biogeogr. 38:617-618.
    • (2011) J. Biogeogr. , vol.38 , pp. 617-618
    • Kéry, M.1
  • 22
  • 26
    • 84863457272 scopus 로고    scopus 로고
    • Strategy for modelling nonrandom missing data mechanisms in observational studies using Bayesian methods
    • Mason, A., S. Richardson, I. Plewis, and N. Best. 2012. Strategy for modelling nonrandom missing data mechanisms in observational studies using Bayesian methods. J. Offic. Stat. 28:279-302.
    • (2012) J. Offic. Stat. , vol.28 , pp. 279-302
    • Mason, A.1    Richardson, S.2    Plewis, I.3    Best, N.4
  • 27
    • 84899076091 scopus 로고    scopus 로고
    • How long should we ignore imperfect detection of species in the marine environment when modelling their distribution
    • in press).
    • Monk, J. 2013. How long should we ignore imperfect detection of species in the marine environment when modelling their distribution. Fish Fisheries. (in press).
    • (2013) Fish Fisheries
    • Monk, J.1
  • 28
    • 33646242418 scopus 로고    scopus 로고
    • Modelling distribution and abundance with presence-only data
    • Pearce, J. L. and M. S. Boyce. 2006. Modelling distribution and abundance with presence-only data. J. Appl. Ecol. 43:405-412.
    • (2006) J. Appl. Ecol. , vol.43 , pp. 405-412
    • Pearce, J.L.1    Boyce, M.S.2
  • 30
    • 27944446350 scopus 로고    scopus 로고
    • Maximum entropy modeling of species geographic distributions
    • Phillips, S. J., R. P. Anderson, and R. E. Schapire. 2006. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190:231-259.
    • (2006) Ecol. Model. , vol.190 , pp. 231-259
    • Phillips, S.J.1    Anderson, R.P.2    Schapire, R.E.3
  • 31
    • 63849333773 scopus 로고    scopus 로고
    • Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data
    • Phillips, S. J., M. Dudík, J. Elith, C. H. Graham, A. Lehmann, J. Leathwick, et al. 2009. Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecol. Appl. 19:181-197.
    • (2009) Ecol. Appl. , vol.19 , pp. 181-197
    • Phillips, S.J.1    Dudík, M.2    Elith, J.3    Graham, C.H.4    Lehmann, A.5    Leathwick, J.6
  • 32
    • 84875940984 scopus 로고    scopus 로고
    • Equivalence of MAXENT and Poisson point process models for species distribution modeling in ecology
    • Renner, I. W., and D. I. Warton. 2013. Equivalence of MAXENT and Poisson point process models for species distribution modeling in ecology. Biometrics 69:274-281.
    • (2013) Biometrics , vol.69 , pp. 274-281
    • Renner, I.W.1    Warton, D.I.2
  • 33
    • 79958091691 scopus 로고    scopus 로고
    • Does accounting for imperfect detection improve species distribution models?
    • Rota, C. T., R. J. Fletcher, J. M. Evans, and R. L. Hutto. 2011. Does accounting for imperfect detection improve species distribution models? Ecography 34:659-670.
    • (2011) Ecography , vol.34 , pp. 659-670
    • Rota, C.T.1    Fletcher, R.J.2    Evans, J.M.3    Hutto, R.L.4
  • 34
    • 0017133178 scopus 로고
    • Inference and missing data
    • Rubin, D. 1976. Inference and missing data. Biometrika 63:581-592.
    • (1976) Biometrika , vol.63 , pp. 581-592
    • Rubin, D.1
  • 35
    • 0002715683 scopus 로고    scopus 로고
    • Recent applications of point process methods in forestry statistics
    • Stoyan, D., and A. Penttinen. 2000. Recent applications of point process methods in forestry statistics. Stat. Sci. 15:61-78.
    • (2000) Stat. Sci. , vol.15 , pp. 61-78
    • Stoyan, D.1    Penttinen, A.2
  • 36
    • 84887608888 scopus 로고    scopus 로고
    • Opportunistic citizen science data of animal species produce reliable estimates of distribution trends if analysed with occupancy models
    • Van Strien, A., C. van Swaay, and T. Termaat. 2013. Opportunistic citizen science data of animal species produce reliable estimates of distribution trends if analysed with occupancy models. J. Appl. Ecol. 50:1450-1458
    • (2013) J. Appl. Ecol. , vol.50 , pp. 1450-1458
    • Van Strien, A.1    van Swaay, C.2    Termaat, T.3
  • 37
    • 84886295282 scopus 로고    scopus 로고
    • Advancing our thinking in presence-only and used-available analysis
    • Warton, D., and G. Aarts. 2013. Advancing our thinking in presence-only and used-available analysis. J. Anim. Ecol. 82:1125-1134
    • (2013) J. Anim. Ecol. , vol.82 , pp. 1125-1134
    • Warton, D.1    Aarts, G.2
  • 38
    • 79952680020 scopus 로고    scopus 로고
    • Poisson point process models solve the "pseudo-absence problem" for presence-only data in ecology
    • Warton, D. I., and L. C. Shepherd. 2010. Poisson point process models solve the "pseudo-absence problem" for presence-only data in ecology. Ann. Appl. Stat. 4:1383-1402.
    • (2010) Ann. Appl. Stat. , vol.4 , pp. 1383-1402
    • Warton, D.I.1    Shepherd, L.C.2
  • 40
    • 34249281320 scopus 로고    scopus 로고
    • Eliciting and using expert opinions about dropout bias in randomized controlled trials
    • White, I. R., J. Carpenter, S. Evans, and S. Schroter. 2007. Eliciting and using expert opinions about dropout bias in randomized controlled trials. Clinical Trials 4:125-139.
    • (2007) Clinical Trials , vol.4 , pp. 125-139
    • White, I.R.1    Carpenter, J.2    Evans, S.3    Schroter, S.4
  • 42
    • 85019254525 scopus 로고    scopus 로고
    • Fitting statistical distributions to sea duck count data: implications for survey design and abundance estimation
    • in press.
    • Zipkin, E. F., J. B. Leirness, B. P. Kinlan, A. F. O'Connell, and E. D. Silverman. 2012. Fitting statistical distributions to sea duck count data: implications for survey design and abundance estimation. Statist. Methodol. in press.
    • (2012) Statist. Methodol.
    • Zipkin, E.F.1    Leirness, J.B.2    Kinlan, B.P.3    O'Connell, A.F.4    Silverman, E.D.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.