-
1
-
-
84870347295
-
Moment estimates for convex measures
-
MR-3005719
-
R. Adamczak, O. Guédon, R. Latała, K. Oleszkiewicz, A. E. Litvak, A. Pajor, and N. Tomczak- Jaegermann. Moment estimates for convex measures. Electronic Journal of Probability, 17(101):1-19, 2012. MR-3005719
-
(2012)
Electronic Journal of Probability
, vol.17
, Issue.101
, pp. 1-19
-
-
Adamczak, R.1
Guédon, O.2
Latała, R.3
Oleszkiewicz, K.4
Litvak, A.E.5
Pajor, A.6
Tomczak-Jaegermann, N.7
-
3
-
-
77749271023
-
Quantitative estimates of the convergence of the empirical covariance matrix in log-concave ensembles
-
MR-2601042
-
R. Adamczak, A. E. Litvak, A. Pajor, and N. Tomczak-Jaegermann. Quantitative estimates of the convergence of the empirical covariance matrix in log-concave ensembles. J. Amer. Math. Soc., 23(2):535-561, 2010. MR-2601042
-
(2010)
J. Amer. Math. Soc
, vol.23
, Issue.2
, pp. 535-561
-
-
Adamczak, R.1
Litvak, A.E.2
Pajor, A.3
Tomczak-Jaegermann, N.4
-
4
-
-
79551492613
-
Sharp bounds on the rate of convergence of the empirical covariance matrix
-
MR-2769907
-
R. Adamczak, A. E. Litvak, A. Pajor, and N. Tomczak-Jaegermann. Sharp bounds on the rate of convergence of the empirical covariance matrix. C. R. Math. Acad. Sci. Paris, 349(3- 4):195-200, 2011. MR-2769907
-
(2011)
C. R. Math. Acad. Sci. Paris
, vol.349
, Issue.3-4
, pp. 195-200
-
-
Adamczak, R.1
Litvak, A.E.2
Pajor, A.3
Tomczak-Jaegermann, N.4
-
5
-
-
0036495139
-
Strong converse for identification via quantum channels
-
MR1889969 (2003d:94069)]. IEEE Trans. Inform. Theory, 49(1):346, 2003, MR-1889969
-
R. Ahlswede and A. Winter. Addendum to: "Strong converse for identification via quantum channels" [IEEE Trans. Inform. Theory 48 (2002), no. 3, 569-579; MR1889969 (2003d:94069)]. IEEE Trans. Inform. Theory, 49(1):346, 2003. MR-1889969
-
(2002)
IEEE Trans. Inform. Theory
, vol.48
, Issue.3
, pp. 569-579
-
-
Ahlswede, R.1
Winter, A.2
-
6
-
-
44249127328
-
Sampling convex bodies: A random matrix approach
-
electronic, MR-2276637
-
G. Aubrun. Sampling convex bodies: a random matrix approach. Proc. Amer. Math. Soc., 135(5):1293-1303 (electronic), 2007. MR-2276637
-
(2007)
Proc. Amer. Math. Soc
, vol.135
, Issue.5
, pp. 1293-1303
-
-
Aubrun, G.1
-
7
-
-
70350682021
-
Twice-Ramanujan sparsifiers
-
ACM, New York, MR-2780071
-
J. D. Batson, D. A. Spielman, and N. Srivastava. Twice-Ramanujan sparsifiers. In STOC'09- Proceedings of the 2009 ACM International Symposium on Theory of Computing, pages 255-262. ACM, New York, 2009. MR-2780071
-
(2009)
STOC'09- Proceedings of the 2009 ACM International Symposium On Theory of Computing
, pp. 255-262
-
-
Batson, J.D.1
Spielman, D.A.2
Srivastava, N.3
-
9
-
-
84890882849
-
-
Panoramas et Synthèses [Panoramas and Syntheses]. Société Mathématique de France, Paris, MR-3113826
-
D. Chafaï, O. Guédon, G. Lecué, and A. Pajor. Interactions between compressed sensing random matrices and high dimensional geometry, volume 37 of Panoramas et Synthèses [Panoramas and Syntheses]. Société Mathématique de France, Paris, 2012. MR-3113826
-
(2012)
Interactions Between Compressed Sensing Random Matrices and High Dimensional Geometry
, vol.37
-
-
Chafaï, D.1
Guédon, O.2
Lecué, G.3
Pajor, A.4
-
12
-
-
80053579803
-
Interpolating thin-shell and sharp large-deviation estimates for isotropic log-concave measures
-
MR-2846382
-
O. Guédon and E. Milman. Interpolating thin-shell and sharp large-deviation estimates for isotropic log-concave measures. Geom. Funct. Anal., 21(5):1043-1068, 2011. MR-2846382
-
(2011)
Geom. Funct. Anal
, vol.21
, Issue.5
, pp. 1043-1068
-
-
Guédon, O.1
Milman, E.2
-
13
-
-
84947403595
-
Probability inequalities for sums of bounded random variables
-
MR-0144363
-
W. Hoeffding. Probability inequalities for sums of bounded random variables. J. Amer. Statist. Assoc., 58:13-30, 1963. MR-0144363
-
(1963)
J. Amer. Statist. Assoc
, vol.58
, pp. 13-30
-
-
Hoeffding, W.1
-
14
-
-
0039468442
-
Random walks and an O_(n5) volume algorithm for convex bodies
-
MR-1608200
-
R. Kannan, L. Lovász, and M. Simonovits. Random walks and an O_(n5) volume algorithm for convex bodies. Random Structures Algorithms, 11(1):1-50, 1997. MR-1608200
-
(1997)
Random Structures Algorithms
, vol.11
, Issue.1
, pp. 1-50
-
-
Kannan, R.1
Lovász, L.2
Simonovits, M.3
-
15
-
-
84890866498
-
-
Random allocations. V. H. Winston & Sons, Washington, D.C., 1978. Translated from the Russian, Translation edited by A. V. Balakrishnan, Scripta Series in Mathematics, MR-0471016
-
V. F. Kolchin, B. A. Sevast0yanov, and V. P. Chistyakov. Random allocations. V. H. Winston & Sons, Washington, D.C., 1978. Translated from the Russian, Translation edited by A. V. Balakrishnan, Scripta Series in Mathematics. MR-0471016
-
-
-
Kolchin, V.F.1
Sevastoyanov, B.A.2
Chistyakov, V.P.3
-
16
-
-
0039119760
-
The convex analysis of unitarily invariant matrix functions
-
MR-1363368
-
A. S. Lewis. The convex analysis of unitarily invariant matrix functions. J. Convex Anal., 2(1-2):173-183, 1995. MR-1363368
-
(1995)
J. Convex Anal
, vol.2
, Issue.1-2
, pp. 173-183
-
-
Lewis, A.S.1
-
17
-
-
84890883634
-
Matrix concentration inequalities via the method of exchangeable pairs
-
L. Mackey, M. Jordan, R. Chen, B. Farrell, and J. Tropp. Matrix concentration inequalities via the method of exchangeable pairs. Available at arXiv:1201.6002.
-
(1201)
Available At ArXiv
, pp. 6002
-
-
Mackey, L.1
Jordan, M.2
Chen, R.3
Farrell, B.4
Tropp, J.5
-
18
-
-
77955434395
-
Sums of random Hermitian matrices and an inequality by Rudelson
-
MR-2653725
-
R. I. Oliveira. Sums of random Hermitian matrices and an inequality by Rudelson. Electron. Commun. Probab., 15:203-212, 2010. MR-2653725
-
(2010)
Electron. Commun. Probab
, vol.15
, pp. 203-212
-
-
Oliveira, R.I.1
-
19
-
-
33846813628
-
Concentration of mass on convex bodies
-
MR-2276533
-
G. Paouris. Concentration of mass on convex bodies. Geom. Funct. Anal., 16(5):1021-1049, 2006. MR-2276533
-
(2006)
Geom. Funct. Anal
, vol.16
, Issue.5
, pp. 1021-1049
-
-
Paouris, G.1
-
20
-
-
82755183607
-
Small ball probability estimates for log-concave measures
-
MR-2833584
-
G. Paouris. Small ball probability estimates for log-concave measures. Trans. Amer. Math. Soc., 364(1):287-308, 2012. MR-2833584
-
(2012)
Trans. Amer. Math. Soc
, vol.364
, Issue.1
, pp. 287-308
-
-
Paouris, G.1
-
21
-
-
51249187914
-
On the subspaces of Lp (p > 2) spanned by sequences of independent random variables
-
MR-0271721
-
H. P. Rosenthal. On the subspaces of Lp (p > 2) spanned by sequences of independent random variables. Israel J. Math., 8:273-303, 1970. MR-0271721
-
(1970)
Israel J. Math
, vol.8
, pp. 273-303
-
-
Rosenthal, H.P.1
-
22
-
-
0033541884
-
Random vectors in the isotropic position
-
MR-1694526
-
M. Rudelson. Random vectors in the isotropic position. J. Funct. Anal., 164(1):60-72, 1999. MR-1694526
-
(1999)
J. Funct. Anal
, vol.164
, Issue.1
, pp. 60-72
-
-
Rudelson, M.1
-
24
-
-
84885071417
-
Covariance estimation for distributions with 2+ moments
-
MR-3127875
-
N. Srivastava and R. Vershynin. Covariance estimation for distributions with 2+ moments. Ann. Probab., 41(5):3081-3111, 2013. MR-3127875
-
(2013)
Ann. Probab
, vol.41
, Issue.5
, pp. 3081-3111
-
-
Srivastava, N.1
Vershynin, R.2
-
25
-
-
84864315555
-
User-friendly tail bounds for sums of random matrices
-
MR-2946459
-
J. A. Tropp. User-friendly tail bounds for sums of random matrices. Found. Comput. Math., 12(4):389-434, 2012. MR-2946459
-
(2012)
Found. Comput. Math
, vol.12
, Issue.4
, pp. 389-434
-
-
Tropp, J.A.1
|