메뉴 건너뛰기




Volumn , Issue , 2013, Pages 579-582

A study on feature selection for trend prediction of stock trading price

Author keywords

Feature selection; Stock trading; Trend prediction

Indexed keywords

CLASSIFICATION PERFORMANCE; RANDOM FORESTS; RECURSIVE FEATURE ELIMINATION; REDUNDANT FEATURES; SHANGHAI STOCK EXCHANGES; STOCK MARKET; STOCK TRADING; TREND PREDICTION;

EID: 84890870453     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCIS.2013.160     Document Type: Conference Paper
Times cited : (19)

References (16)
  • 1
    • 0742268991 scopus 로고    scopus 로고
    • Support vector machine with adaptive parameters in financial time series forecasting
    • L. J. Cao and Francis E. H. Tay. Support Vector Machine With Adaptive Parameters in Financial Time Series Forecasting. IEEE Trans. on Neural Networks,Vol. 14,No. 6, pp. 1506-1518,2003
    • (2003) IEEE Trans. on Neural Networks , vol.14 , Issue.6 , pp. 1506-1518
    • Cao, L.J.1    Tay, H.F.E.2
  • 2
    • 34248650742 scopus 로고    scopus 로고
    • A hybrid neurogenetic approach for stock forecasting
    • Y. K. Kwon and B. R. Moon. A Hybrid Neurogenetic Approach for Stock Forecasting. IEEE Trans. on Neural Networks, vol. 18, No. 3, pp. 851-864, 2007
    • (2007) IEEE Trans. on Neural Networks , vol.18 , Issue.3 , pp. 851-864
    • Kwon, Y.K.1    Moon, B.R.2
  • 3
    • 84881621220 scopus 로고    scopus 로고
    • Integrating piecewise linear representation and weighted support vector machine for stock trading signal prediction
    • February
    • L. K. Luo, X. Chen. Integrating Piecewise Linear Representation and Weighted Support Vector Machine for Stock Trading Signal Prediction. Applied Soft Computing, Vol. 13, No. 2, February 2013, pp. 806-816
    • (2013) Applied Soft Computing , vol.13 , Issue.2 , pp. 806-816
    • Luo, L.K.1    Chen, X.2
  • 4
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • I. Guyon, et al., Gene selection for cancer classification using support vector machines, Machine Learning 46 (1-3) (2002) 389-422
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 389-422
    • Guyon, I.1
  • 9
    • 34249753618 scopus 로고
    • Support-vector networks
    • C. Corinna and V. Vapnik. Support-Vector Networks. Machine Learning, Vol. 20,No. 3, 1995, pp. 273-297
    • (1995) Machine Learning , vol.20 , Issue.3 , pp. 273-297
    • Corinna, C.1    Vapnik, V.2
  • 11
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • L. Breiman. Random forests. Machine Learning, vol. 45, pp 5-32, 2001
    • (2001) Machine Learning , vol.45 , pp. 5-32
    • Breiman, L.1
  • 12
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L, "Bagging predictors", Machine Learning, vol. 24, pp. 123-140, 1996
    • (1996) Machine Learning , vol.24 , pp. 123-140
    • Breiman, L.1
  • 14
    • 34248647608 scopus 로고    scopus 로고
    • Stability of feature selection algorithms: A study on high-dimensional spaces
    • May
    • A. Kalousis, J. Prados, and M. Hilario. Stability of Feature Selection Algorithms: A Study on High-Dimensional Spaces. Knowledge and Information Systems, vol. 12, no. 1, pp. 95-116, May 2007
    • (2007) Knowledge and Information Systems , vol.12 , Issue.1 , pp. 95-116
    • Kalousis, A.1    Prados, J.2    Hilario, M.3
  • 16
    • 10044235999 scopus 로고    scopus 로고
    • LIBSVM: A library for support vector machines
    • C. C. Chang, C. J. Lin. LIBSVM: A Library for Support Vector Machines, 2001. Software available at: http: // www. csie. ntu. edu. tw /-cjlin/libsvm
    • (2001) Software
    • Chang, C.C.1    Lin, C.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.