메뉴 건너뛰기




Volumn 87, Issue , 2014, Pages 229-240

CPU/GPU near real-time preprocessing for ZY-3 satellite images: Relative radiometric correction, MTF compensation, and geocorrection

Author keywords

CPU GPU; Optimization; Preprocessing; Workload distribution; ZY 3 image

Indexed keywords

IMAGE RESOLUTION; OPTIMIZATION; PROGRAM PROCESSORS; RADIOMETRY;

EID: 84890842464     PISSN: 09242716     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.isprsjprs.2013.11.010     Document Type: Article
Times cited : (26)

References (35)
  • 1
    • 84890846606 scopus 로고    scopus 로고
    • Apple. OpenCL_FFT (Version 1.6). (accessed 26.06.12).
    • Apple, 2012. OpenCL_FFT (Version 1.6). <> (accessed 26.06.12). http://www.khronos.org/registry/cl/specs/opencl-2.0.pdf.
    • (2012)
  • 2
    • 70350621888 scopus 로고    scopus 로고
    • Hybrid GPU-based single- and double-bounce SAR simulation
    • Balz T., Stilla U. Hybrid GPU-based single- and double-bounce SAR simulation. IEEE Trans. Geosci. Remote Sens. 2009, 47(10):3519-3529.
    • (2009) IEEE Trans. Geosci. Remote Sens. , vol.47 , Issue.10 , pp. 3519-3529
    • Balz, T.1    Stilla, U.2
  • 3
    • 84890835228 scopus 로고    scopus 로고
    • Threading Models for High-Performance Computing: Pthreads or OpenMP?
    • (accessed 10.21.2010).
    • Binstock, A., 2010. Threading Models for High-Performance Computing: Pthreads or OpenMP? <> (accessed 10.21.2010). http://software.intel.com/en-us/articles/threading-models-for-high-performance-computing-pthreads-or-openmp.
    • (2010)
    • Binstock, A.1
  • 6
    • 80053973744 scopus 로고    scopus 로고
    • Research on orthorectification of remote sensing images using GPU-CPU cooperative processing
    • Tengchong, China, August. (on CD-ROM).
    • Dai, C.G., Yang, J.Y., 2011. Research on orthorectification of remote sensing images using GPU-CPU cooperative processing. In: Proc. The 2011 International Symposium on Image and Data Fusion, Tengchong, China, August. (on CD-ROM).
    • (2011) Proc. The 2011 International Symposium on Image and Data Fusion
    • Dai, C.G.1    Yang, J.Y.2
  • 7
    • 79551489361 scopus 로고    scopus 로고
    • Image restoration of the asymmetric point spread function of a high-resolution remote sensing satellite with time-delayed integration
    • Dong H.L., Ji Y.Y., Doo C.S., Jeong H.S., Jae H.C., Hyo S.L. Image restoration of the asymmetric point spread function of a high-resolution remote sensing satellite with time-delayed integration. Adv. Space Res. 2011, 47(4):690-701.
    • (2011) Adv. Space Res. , vol.47 , Issue.4 , pp. 690-701
    • Dong, H.L.1    Ji, Y.Y.2    Doo, C.S.3    Jeong, H.S.4    Jae, H.C.5    Hyo, S.L.6
  • 9
    • 0028665871 scopus 로고
    • Best p. estimation of SPOT p-mode point spread function and derivation of a deconvolution filter
    • Forster B.C. Best p. estimation of SPOT p-mode point spread function and derivation of a deconvolution filter. ISPRS J. Photogramm. Remote Sens. 1994, 49(6):32-42.
    • (1994) ISPRS J. Photogramm. Remote Sens. , vol.49 , Issue.6 , pp. 32-42
    • Forster, B.C.1
  • 13
    • 80052335998 scopus 로고    scopus 로고
    • A Performance Comparison of CUDA and OpenCL
    • Karimi, K., Dickson N.G., Hamze, F., 2010. A Performance Comparison of CUDA and OpenCL. <>. http://arxiv.org/pdf/1005.2581.
    • (2010)
    • Karimi, K.1    Dickson, N.G.2    Hamze, F.3
  • 14
    • 84890843089 scopus 로고    scopus 로고
    • Khronos. OpenCL 2.0 API Provisional Specification, Oregon, America. (accessed 06.13.13).
    • Khronos, 2013. OpenCL 2.0 API Provisional Specification, Oregon, America. <> (accessed 06.13.13). http://www.khronos.org/registry/cl/specs/opencl-2.0.pdf.
    • (2013)
  • 18
    • 55649085550 scopus 로고    scopus 로고
    • Doppler keystone transform: an approach suitable for a parallel implementation of SAR moving target imaging
    • Li G., Xin X.G., Peng Y.N. Doppler keystone transform: an approach suitable for a parallel implementation of SAR moving target imaging. IEEE Geosci. Remote Sens. Lett. 2008, 5(4):573-577.
    • (2008) IEEE Geosci. Remote Sens. Lett. , vol.5 , Issue.4 , pp. 573-577
    • Li, G.1    Xin, X.G.2    Peng, Y.N.3
  • 19
    • 84857924356 scopus 로고    scopus 로고
    • CPU/GPU computing for long-wave radiation physics on large GPU clusters
    • Lu F.S., Song J.Q., Cao X.Q., Zhu X.Q. CPU/GPU computing for long-wave radiation physics on large GPU clusters. Comput. Geosci. 2012, 41:47-55.
    • (2012) Comput. Geosci. , vol.41 , pp. 47-55
    • Lu, F.S.1    Song, J.Q.2    Cao, X.Q.3    Zhu, X.Q.4
  • 20
    • 84861742474 scopus 로고    scopus 로고
    • GPU acceleration of the updated Goddard shortwave radiation scheme in the weather research and forecasting (WRF) model
    • Mielikainen J., Huang B., Huang H.L.A., Goldberg M.D. GPU acceleration of the updated Goddard shortwave radiation scheme in the weather research and forecasting (WRF) model. IEEE J. Selected Top. Appl. Earth Obs. Remote Sens. 2012, 5(2):555-562.
    • (2012) IEEE J. Selected Top. Appl. Earth Obs. Remote Sens. , vol.5 , Issue.2 , pp. 555-562
    • Mielikainen, J.1    Huang, B.2    Huang, H.L.A.3    Goldberg, M.D.4
  • 22
    • 84890814838 scopus 로고    scopus 로고
    • NVIDIA. NVIDIA's White Paper of Next Generation CUDA Compute Architecture: Fermi. California.
    • NVIDIA, 2009. NVIDIA's White Paper of Next Generation CUDA Compute Architecture: Fermi. California.
    • (2009)
  • 23
    • 84890836631 scopus 로고    scopus 로고
    • NVIDIA. NVIDIA's White Paper of Precision & Performance: Floating Point and IEEE 754 Compliance for NVIDIA GPUs. California.
    • NVIDIA, 2011. NVIDIA's White Paper of Precision & Performance: Floating Point and IEEE 754 Compliance for NVIDIA GPUs. California.
    • (2011)
  • 24
    • 84890821650 scopus 로고    scopus 로고
    • NVIDIA. CUDA C Best Performance Guide V5.0. California.
    • NVIDIA, 2012. CUDA C Best Performance Guide V5.0. California.
    • (2012)
  • 25
    • 84863449993 scopus 로고    scopus 로고
    • Accelerating geostatistical simulations using graphics processing units (GPU)
    • Pejman T., Muhammad S., Gregoire M., Ardeshir H. Accelerating geostatistical simulations using graphics processing units (GPU). Comput. Geosci. 2012, 46:51-59.
    • (2012) Comput. Geosci. , vol.46 , pp. 51-59
    • Pejman, T.1    Muhammad, S.2    Gregoire, M.3    Ardeshir, H.4
  • 31
    • 70549084806 scopus 로고    scopus 로고
    • Processors for ALOS optical data: deconvolution, DEM Generation, orthorectification, and atmospheric correction
    • Schwind P., SchNeider M., Palubinskas G., Storch T., Müller R., Richter R. Processors for ALOS optical data: deconvolution, DEM Generation, orthorectification, and atmospheric correction. IEEE Trans. Geosci. Remote Sens. 2009, 47(12):4074-4082.
    • (2009) IEEE Trans. Geosci. Remote Sens. , vol.47 , Issue.12 , pp. 4074-4082
    • Schwind, P.1    SchNeider, M.2    Palubinskas, G.3    Storch, T.4    Müller, R.5    Richter, R.6
  • 32
    • 84860991547 scopus 로고    scopus 로고
    • GPU-accelerated MRF segmentation algorithm for SAR images
    • Sui H.G., Peng F.F., Xu C., Sun K.M., Gong J.Y. GPU-accelerated MRF segmentation algorithm for SAR images. Comput. Geosci. 2012, 43:159-166.
    • (2012) Comput. Geosci. , vol.43 , pp. 159-166
    • Sui, H.G.1    Peng, F.F.2    Xu, C.3    Sun, K.M.4    Gong, J.Y.5
  • 34
    • 84863061467 scopus 로고    scopus 로고
    • Accelerating geospatial analysis on GPUs using CUDA
    • Xia Y.J., Kuang L., Li X.M. Accelerating geospatial analysis on GPUs using CUDA. J. Zhejiang Univ. - Sci. C 2011, 12(12):990-999.
    • (2011) J. Zhejiang Univ. - Sci. C , vol.12 , Issue.12 , pp. 990-999
    • Xia, Y.J.1    Kuang, L.2    Li, X.M.3
  • 35
    • 84880258628 scopus 로고    scopus 로고
    • Solving incompressible two-phase flows on multi-GPU clusters
    • Zaspel P., Griebel M. Solving incompressible two-phase flows on multi-GPU clusters. Comput. Fluids 2013, 80:256-264.
    • (2013) Comput. Fluids , vol.80 , pp. 256-264
    • Zaspel, P.1    Griebel, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.