메뉴 건너뛰기




Volumn 41, Issue 6, 2014, Pages 2989-3004

Multi-label classification by exploiting label correlations

Author keywords

Correlation; Multi label classification; Rough sets; Uncertainty

Indexed keywords

CLASSIFICATION METHODS; LOCAL CORRELATIONS; MULTI-LABEL CLASSIFICATIONS; MULTI-LABEL LEARNING; NEIGHBORHOOD ROUGH SETS; TEXT CATEGORIZATION; UNCERTAINTY; VARIABLE PRECISION;

EID: 84890571220     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2013.10.030     Document Type: Article
Times cited : (97)

References (31)
  • 1
    • 3042597440 scopus 로고    scopus 로고
    • Learning multi-label scene classification
    • M.R. Boutell, J. Luo, and X. Shen Learning multi-label scene classification Pattern Recognition 37 9 2004 1757 1771
    • (2004) Pattern Recognition , vol.37 , Issue.9 , pp. 1757-1771
    • Boutell, M.R.1    Luo, J.2    Shen, X.3
  • 3
    • 77949851470 scopus 로고    scopus 로고
    • Representing uncertainty on set-valued variables using belief functions
    • T. Denœux, Z. Younes, and F. Abdallah Representing uncertainty on set-valued variables using belief functions Artificial Intelligence 174 7 2010 479 499
    • (2010) Artificial Intelligence , vol.174 , Issue.7 , pp. 479-499
    • Denœux, T.1    Younes, Z.2    Abdallah, F.3
  • 4
    • 0038401728 scopus 로고    scopus 로고
    • Object recognition as chine translation: Learning a lexicon for a fixed image vocabulary
    • Springer Berlin Heidelberg
    • P. Duygulu, K. Barnard, and J.F.G. de Freitas Object recognition as chine translation: Learning a lexicon for a fixed image vocabulary Computer vision-ECCV 2002 2006 Springer Berlin Heidelberg 97 112
    • (2006) Computer Vision-ECCV 2002 , pp. 97-112
    • Duygulu, P.1    Barnard, K.2    De Freitas, J.F.G.3
  • 7
    • 7444230008 scopus 로고    scopus 로고
    • Discriminative methods for multi-labeled classification
    • Springer Berlin Heidelberg
    • S. Godbole, and S. Sarawagi Discriminative methods for multi-labeled classification Advances in knowledge discovery and data mining 2004 Springer Berlin Heidelberg 22 30
    • (2004) Advances in Knowledge Discovery and Data Mining , pp. 22-30
    • Godbole, S.1    Sarawagi, S.2
  • 8
    • 42949087870 scopus 로고    scopus 로고
    • Mixed feature selection based on granulation and approximation
    • Q. Hu, J. Liu, and D. Yu Mixed feature selection based on granulation and approximation Knowledge-Based Systems 21 4 2008 294 304
    • (2008) Knowledge-Based Systems , vol.21 , Issue.4 , pp. 294-304
    • Hu, Q.1    Liu, J.2    Yu, D.3
  • 11
    • 80255123384 scopus 로고    scopus 로고
    • FSKNN: Multi-label text categorization based on fuzzy similarity and k nearest neighbors
    • J.Y. Jiang, S.C. Tsai, and S.J. Lee FSKNN: Multi-label text categorization based on fuzzy similarity and k nearest neighbors Expert Systems with Applications 39 3 2012 2813 2821
    • (2012) Expert Systems with Applications , vol.39 , Issue.3 , pp. 2813-2821
    • Jiang, J.Y.1    Tsai, S.C.2    Lee, S.J.3
  • 15
    • 83155175374 scopus 로고    scopus 로고
    • Classifier chains for multi-label classification
    • J. Read, B. Pfahringer, and G. Holmes Classifier chains for multi-label classification Machine Learning 85 3 2011 333 359
    • (2011) Machine Learning , vol.85 , Issue.3 , pp. 333-359
    • Read, J.1    Pfahringer, B.2    Holmes, G.3
  • 16
    • 0033905095 scopus 로고    scopus 로고
    • BoosTexter: A boosting-based system for text categorization
    • R.E. Schapire, and Y. Singer BoosTexter: A boosting-based system for text categorization Machine learning 39 2-3 2000 135 168
    • (2000) Machine Learning , vol.39 , Issue.23 , pp. 135-168
    • Schapire, R.E.1    Singer, Y.2
  • 23
    • 38049123909 scopus 로고    scopus 로고
    • Random k-labelsets: An ensemble method for multilabel classification
    • Springer Berlin Heidelberg
    • G. Tsoumakas, and I. Vlahavas Random k-labelsets: An ensemble method for multilabel classification Machine learning: ECML 2007 2007 Springer Berlin Heidelberg 406 417
    • (2007) Machine Learning: ECML 2007 , pp. 406-417
    • Tsoumakas, G.1    Vlahavas, I.2
  • 26
    • 52949141834 scopus 로고    scopus 로고
    • Decision trees for hierarchical multi-label classification
    • C. Vens, J. Struyf, and L. Schietgat Decision trees for hierarchical multi-label classification Machine Learning 73 2 2008 185 214
    • (2008) Machine Learning , vol.73 , Issue.2 , pp. 185-214
    • Vens, C.1    Struyf, J.2    Schietgat, L.3
  • 28
    • 0032204205 scopus 로고    scopus 로고
    • Relational interpretations of neighborhood operators and rough set approximation operators
    • Y.Y. Yao Relational interpretations of neighborhood operators and rough set approximation operators Information Sciences 111 1 1998 239 259
    • (1998) Information Sciences , vol.111 , Issue.1 , pp. 239-259
    • Yao, Y.Y.1
  • 30
    • 33748366796 scopus 로고    scopus 로고
    • Multilabel neural networks with applications to functional genomics and text categorization
    • M.L. Zhang, and Z.H. Zhou Multilabel neural networks with applications to functional genomics and text categorization Knowledge and Data Engineering, IEEE Transactions on 18 10 2006 1338 1351
    • (2006) Knowledge and Data Engineering, IEEE Transactions on , vol.18 , Issue.10 , pp. 1338-1351
    • Zhang, M.L.1    Zhou, Z.H.2
  • 31
    • 33947681316 scopus 로고    scopus 로고
    • ML-KNN: A lazy learning approach to multi-label learning
    • M.L. Zhang, and Z.H. Zhou ML-KNN: A lazy learning approach to multi-label learning Pattern Recognition 40 7 2007 2038 2048
    • (2007) Pattern Recognition , vol.40 , Issue.7 , pp. 2038-2048
    • Zhang, M.L.1    Zhou, Z.H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.