메뉴 건너뛰기




Volumn 396, Issue , 2014, Pages 224-234

Sampling from complex networks using distributed learning automata

Author keywords

Complex networks; Distributed learning automata; Network sampling; Social networks

Indexed keywords

AUTOMATA THEORY; INFORMATION SERVICES; LEARNING ALGORITHMS; ROBOTS; SOCIAL NETWORKING (ONLINE);

EID: 84890568327     PISSN: 03784371     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.physa.2013.11.015     Document Type: Article
Times cited : (67)

References (55)
  • 1
    • 0032482432 scopus 로고    scopus 로고
    • Collective dynamics of "small-world" networks
    • D.J. Watts, and S.H. Strogatz Collective dynamics of "small- world" networks Nature 393 1998 440 442
    • (1998) Nature , vol.393 , pp. 440-442
    • Watts, D.J.1    Strogatz, S.H.2
  • 2
    • 0038483826 scopus 로고    scopus 로고
    • Emergence of scaling in random networks
    • A.L. Barabási, and R. Albert Emergence of scaling in random networks Science 286 1999 509 512
    • (1999) Science , vol.286 , pp. 509-512
    • Barabási, A.L.1    Albert, R.2
  • 3
    • 84878418984 scopus 로고    scopus 로고
    • Research on spatial economic structure for different economic sectors from a perspective of a complex network
    • S. Hu, H. Yang, B. Cai, and C. Yang Research on spatial economic structure for different economic sectors from a perspective of a complex network Physica A 392 2013 3682 3697
    • (2013) Physica A , vol.392 , pp. 3682-3697
    • Hu, S.1    Yang, H.2    Cai, B.3    Yang, C.4
  • 4
    • 84879685723 scopus 로고    scopus 로고
    • Characterizing traffic time series based on complex network theory
    • J. Tang, Y. Wang, and F. Liu Characterizing traffic time series based on complex network theory Physica A 392 2013 4192 4201
    • (2013) Physica A , vol.392 , pp. 4192-4201
    • Tang, J.1    Wang, Y.2    Liu, F.3
  • 5
    • 84877711475 scopus 로고    scopus 로고
    • Understanding the cascading failures in Indian power grids with complex networks theory
    • G. Zhang, Z. Li, B. Zhang, and W.A. Halang Understanding the cascading failures in Indian power grids with complex networks theory Physica A 392 2013 3273 3280
    • (2013) Physica A , vol.392 , pp. 3273-3280
    • Zhang, G.1    Li, Z.2    Zhang, B.3    Halang, W.A.4
  • 6
    • 84890562942 scopus 로고    scopus 로고
    • Estimation algorithm for counting periodic orbits in complex social networks
    • I. Sorkhoh, K.A. Mahdi, and M. Safar Estimation algorithm for counting periodic orbits in complex social networks Inf. Syst. Front. 15 2013 193 202
    • (2013) Inf. Syst. Front. , vol.15 , pp. 193-202
    • Sorkhoh, I.1    Mahdi, K.A.2    Safar, M.3
  • 7
    • 84861460684 scopus 로고    scopus 로고
    • Modeling the growth of complex software function dependency networks
    • J. Ma, D. Zeng, and H. Zhao Modeling the growth of complex software function dependency networks Inf. Syst. Front. 14 2012 301 315
    • (2012) Inf. Syst. Front. , vol.14 , pp. 301-315
    • Ma, J.1    Zeng, D.2    Zhao, H.3
  • 8
    • 33947724499 scopus 로고    scopus 로고
    • Characterization of complex networks: A survey of measurements
    • L.F. Costa, F.A. Rodrigues, G. Travieso, and P.R.V. Boas Characterization of complex networks: a survey of measurements Adv. Phys. 56 2007 167 242
    • (2007) Adv. Phys. , vol.56 , pp. 167-242
    • Costa, L.F.1    Rodrigues, F.A.2    Travieso, G.3    Boas, P.R.V.4
  • 12
    • 84878144405 scopus 로고    scopus 로고
    • On set size distribution estimation and the characterization of large networks via sampling
    • F. Murai, B. Ribeiro, D. Towsley, and P. Wang On set size distribution estimation and the characterization of large networks via sampling IEEE J. Sel. Areas Commun. 31 2013 1017 1025
    • (2013) IEEE J. Sel. Areas Commun. , vol.31 , pp. 1017-1025
    • Murai, F.1    Ribeiro, B.2    Towsley, D.3    Wang, P.4
  • 13
    • 77956874564 scopus 로고    scopus 로고
    • Probability based estimation theory for respondent driven sampling
    • E. Volz, and D.D. Heckathorn Probability based estimation theory for respondent driven sampling J. Off. Stat.-Stockholm 24 2008 79
    • (2008) J. Off. Stat.-Stockholm , vol.24 , pp. 79
    • Volz, E.1    Heckathorn, D.D.2
  • 14
    • 84968898131 scopus 로고    scopus 로고
    • Imputation of missing network data: Some simple procedures
    • M. Huisman Imputation of missing network data: some simple procedures J. Soc. Struct. 10 2009 1 29
    • (2009) J. Soc. Struct. , vol.10 , pp. 1-29
    • Huisman, M.1
  • 20
    • 33746476985 scopus 로고    scopus 로고
    • Diffusion maps and coarse-graining: A unified framework for dimensionality reduction, graph partitioning, and data set parameterization
    • S. Lafon, and A.B. Lee Diffusion maps and coarse-graining: a unified framework for dimensionality reduction, graph partitioning, and data set parameterization IEEE Trans. Pattern Anal. Mach. Intell. 28 2006 1393 1403
    • (2006) IEEE Trans. Pattern Anal. Mach. Intell. , vol.28 , pp. 1393-1403
    • Lafon, S.1    Lee, A.B.2
  • 21
    • 79961078486 scopus 로고    scopus 로고
    • Coarse graining for synchronization in directed networks
    • A. Zeng, and L. Lü Coarse graining for synchronization in directed networks Phys. Rev. E 83 2011 056123
    • (2011) Phys. Rev. e , vol.83 , pp. 056123
    • Zeng, A.1    Lü, L.2
  • 23
    • 34547440420 scopus 로고    scopus 로고
    • Fractality and self-similarity in scale-free networks
    • J.S. Kim, K.I. Goh, B. Kahng, and D. Kim Fractality and self-similarity in scale-free networks New J. Phys. 9 2007 177
    • (2007) New J. Phys. , vol.9 , pp. 177
    • Kim, J.S.1    Goh, K.I.2    Kahng, B.3    Kim, D.4
  • 24
    • 32844475337 scopus 로고    scopus 로고
    • Statistical properties of sampled networks
    • S.H. Lee, P.J. Kim, and H. Jeong Statistical properties of sampled networks Phys. Rev. E 73 2006 016102
    • (2006) Phys. Rev. e , vol.73 , pp. 016102
    • Lee, S.H.1    Kim, P.J.2    Jeong, H.3
  • 25
    • 84874438960 scopus 로고    scopus 로고
    • second ed. Cambridge University Press
    • S. Even Graph Algorithms second ed. 2011 Cambridge University Press
    • (2011) Graph Algorithms
    • Even, S.1
  • 28
    • 34247549810 scopus 로고    scopus 로고
    • Statistical properties of sampled networks by random walks
    • S. Yoon, S. Lee, S.H. Yook, and Y. Kim Statistical properties of sampled networks by random walks Phys. Rev. E 75 2007 046114
    • (2007) Phys. Rev. e , vol.75 , pp. 046114
    • Yoon, S.1    Lee, S.2    Yook, S.H.3    Kim, Y.4
  • 31
    • 77951135055 scopus 로고    scopus 로고
    • Assessing respondent-driven sampling
    • S. Goel, and M.J. Salganik Assessing respondent-driven sampling Proc. Natl. Acad. Sci. 107 2010 6743 6747
    • (2010) Proc. Natl. Acad. Sci. , vol.107 , pp. 6743-6747
    • Goel, S.1    Salganik, M.J.2
  • 32
    • 77949340082 scopus 로고    scopus 로고
    • Respondent-driven sampling: An assessment of current methodology
    • K.J. Gile, and M.S. Handcock Respondent-driven sampling: an assessment of current methodology Sociol. Methodol. 40 2010 285 327
    • (2010) Sociol. Methodol. , vol.40 , pp. 285-327
    • Gile, K.J.1    Handcock, M.S.2
  • 41
    • 84863463108 scopus 로고    scopus 로고
    • Sampling from complex networks with high community structures
    • M. Salehi, H.R. Rabiee, and A. Rajabi Sampling from complex networks with high community structures Chaos 22 2012 023126
    • (2012) Chaos , vol.22 , pp. 023126
    • Salehi, M.1    Rabiee, H.R.2    Rajabi, A.3
  • 44
    • 84860290983 scopus 로고    scopus 로고
    • Finding minimum weight connected dominating set in stochastic graph based on learning automata
    • J. Akbari Torkestani, and M.R. Meybodi Finding minimum weight connected dominating set in stochastic graph based on learning automata Inform. Sci. 200 2012 57 77
    • (2012) Inform. Sci. , vol.200 , pp. 57-77
    • Akbari Torkestani, J.1    Meybodi, M.R.2
  • 46
    • 77957010421 scopus 로고    scopus 로고
    • LACAIS: Learning automata based cooperative artificial immune system for function optimization
    • Springer Berlin, Heidelberg
    • A. Rezvanian, and M.R. Meybodi LACAIS: learning automata based cooperative artificial immune system for function optimization Contemporary Computing 2010 Springer Berlin, Heidelberg 64 75
    • (2010) Contemporary Computing , pp. 64-75
    • Rezvanian, A.1    Meybodi, M.R.2
  • 47
    • 78650765237 scopus 로고    scopus 로고
    • Tracking extrema in dynamic environments using a learning automata-based immune algorithm
    • Springer Berlin, Heidelberg
    • A. Rezvanian, M.R. Meybodi, and T. Kim Tracking extrema in dynamic environments using a learning automata-based immune algorithm Grid and Distributed Computing, Control and Automation 2010 Springer Berlin, Heidelberg 216 225
    • (2010) Grid and Distributed Computing, Control and Automation , pp. 216-225
    • Rezvanian, A.1    Meybodi, M.R.2    Kim, T.3
  • 48
    • 84868236596 scopus 로고    scopus 로고
    • A highly reliable and parallelizable data distribution scheme for data grids
    • J. Akbari Torkestani A highly reliable and parallelizable data distribution scheme for data grids Future Gener. Comput. Syst. 29 2013 509 519
    • (2013) Future Gener. Comput. Syst. , vol.29 , pp. 509-519
    • Akbari Torkestani, J.1
  • 49
    • 84868286348 scopus 로고    scopus 로고
    • A novel community detection algorithm for privacy preservation in social networks
    • A. Abraham
    • F. Amiri, N. Yazdani, H. Faili, and A. Rezvanian A novel community detection algorithm for privacy preservation in social networks A. Abraham, Intelligent Informatics 2013 443 450
    • (2013) Intelligent Informatics , pp. 443-450
    • Amiri, F.1    Yazdani, N.2    Faili, H.3    Rezvanian, A.4
  • 50
    • 33750023365 scopus 로고    scopus 로고
    • Utilizing distributed learning automata to solve stochastic shortest path problems
    • H. Beigy, and M.R. Meybodi Utilizing distributed learning automata to solve stochastic shortest path problems Int. J. Uncertain. Fuzz. 14 2006 591
    • (2006) Int. J. Uncertain. Fuzz. , vol.14 , pp. 591
    • Beigy, H.1    Meybodi, M.R.2
  • 51
    • 76849098865 scopus 로고    scopus 로고
    • Clustering the wireless Ad Hoc networks: A distributed learning automata approach
    • J. Akbari Torkestani, and M.R. Meybodi Clustering the wireless Ad Hoc networks: a distributed learning automata approach J. Parallel Distrib. Comput. 70 2010 394 405
    • (2010) J. Parallel Distrib. Comput. , vol.70 , pp. 394-405
    • Akbari Torkestani, J.1    Meybodi, M.R.2
  • 52
    • 71749090581 scopus 로고    scopus 로고
    • Effective page recommendation algorithms based on distributed learning automata and weighted association rules
    • R. Forsati, and M.R. Meybodi Effective page recommendation algorithms based on distributed learning automata and weighted association rules Expert Syst. Appl. 37 2010 1316 1330
    • (2010) Expert Syst. Appl. , vol.37 , pp. 1316-1330
    • Forsati, R.1    Meybodi, M.R.2
  • 54
    • 10044260009 scopus 로고    scopus 로고
    • Problems with fitting to the power-law distribution
    • M.L. Goldstein, S.A. Morris, and G.G. Yen Problems with fitting to the power-law distribution Eur. Phys. J. B 41 2004 255 258
    • (2004) Eur. Phys. J. B , vol.41 , pp. 255-258
    • Goldstein, M.L.1    Morris, S.A.2    Yen, G.G.3
  • 55
    • 56349136928 scopus 로고    scopus 로고
    • Random sampling from a search engine's index
    • Z. Bar-Yossef, and M. Gurevich Random sampling from a search engine's index J. ACM 55 2008 24:1 24:74
    • (2008) J. ACM , vol.55 , pp. 241-2474
    • Bar-Yossef, Z.1    Gurevich, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.