메뉴 건너뛰기




Volumn 239, Issue , 2014, Pages 364-372

Intensification of cavitational activity in the sonochemical reactors using gaseous additives

Author keywords

Cavitation nuclei; Gaseous additives; Intensification; Salicylic acid dosimetry; Ultrasonic horn; Weissler reaction

Indexed keywords

GASEOUS ADDITIVES; INITIAL CONCENTRATION; INTENSIFICATION; PHYSICOCHEMICAL PROPERTY; PRESSURE FIELD DISTRIBUTIONS; SONOCHEMICAL REACTORS; ULTRASONIC HORN; WEISSLER REACTION;

EID: 84890368307     PISSN: 13858947     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.cej.2013.11.004     Document Type: Article
Times cited : (30)

References (21)
  • 1
    • 33746606555 scopus 로고    scopus 로고
    • Cavitation: a technology on the horizon
    • Gogate P.R., Tayal R.K., Pandit A.B. Cavitation: a technology on the horizon. Curr. Sci. 2006, 91:35-46.
    • (2006) Curr. Sci. , vol.91 , pp. 35-46
    • Gogate, P.R.1    Tayal, R.K.2    Pandit, A.B.3
  • 2
    • 38849187387 scopus 로고    scopus 로고
    • Cavitational reactors for process intensification of chemical processing applications: a critical review
    • Gogate P.R. Cavitational reactors for process intensification of chemical processing applications: a critical review. Chem. Eng. Process. 2008, 47:515-527.
    • (2008) Chem. Eng. Process. , vol.47 , pp. 515-527
    • Gogate, P.R.1
  • 3
    • 79451472275 scopus 로고    scopus 로고
    • Sonochemical reactors: important design and scale up considerations with a special emphasis on heterogeneous systems
    • Gogate P.R., Sutkar V.S., Pandit A.B. Sonochemical reactors: important design and scale up considerations with a special emphasis on heterogeneous systems. Chem. Eng. J. 2011, 166:1066-1082.
    • (2011) Chem. Eng. J. , vol.166 , pp. 1066-1082
    • Gogate, P.R.1    Sutkar, V.S.2    Pandit, A.B.3
  • 4
    • 0034307265 scopus 로고    scopus 로고
    • Large scale sonochemical processing: aspiration and actuality
    • Mason T.J. Large scale sonochemical processing: aspiration and actuality. Ultrason. Sonochem. 2000, 7:145-149.
    • (2000) Ultrason. Sonochem. , vol.7 , pp. 145-149
    • Mason, T.J.1
  • 5
    • 74249111384 scopus 로고    scopus 로고
    • Design aspects of sonochemical reactors: techniques for understanding cavitational activity distribution and effect of operating parameters
    • Sutkar V.S., Gogate P.R. Design aspects of sonochemical reactors: techniques for understanding cavitational activity distribution and effect of operating parameters. Chem. Eng. J. 2009, 155:26-36.
    • (2009) Chem. Eng. J. , vol.155 , pp. 26-36
    • Sutkar, V.S.1    Gogate, P.R.2
  • 7
    • 84857645005 scopus 로고    scopus 로고
    • Comparative study of sonochemical effects in an ultrasonic bath and in a large-scale flow-through sonoreactor
    • Loranger E., Paquin M., Daneault C., Chabot B. Comparative study of sonochemical effects in an ultrasonic bath and in a large-scale flow-through sonoreactor. Chem. Eng. J. 2011, 178:359-365.
    • (2011) Chem. Eng. J. , vol.178 , pp. 359-365
    • Loranger, E.1    Paquin, M.2    Daneault, C.3    Chabot, B.4
  • 8
    • 84857658932 scopus 로고    scopus 로고
    • Comparison of cavitational activity in different configurations of sonochemical reactors using model reaction supported with theoretical simulations
    • Csoka L., Katekhaye S.N., Gogate P.R. Comparison of cavitational activity in different configurations of sonochemical reactors using model reaction supported with theoretical simulations. Chem. Eng. J. 2011, 178:384-390.
    • (2011) Chem. Eng. J. , vol.178 , pp. 384-390
    • Csoka, L.1    Katekhaye, S.N.2    Gogate, P.R.3
  • 9
    • 42949105562 scopus 로고    scopus 로고
    • Development of a large sonochemical reactor at a high frequency
    • Asakura Y., Yasuda K., Kato D., Kojima Y., Koda S. Development of a large sonochemical reactor at a high frequency. Chem. Eng. J. 2008, 139:339-343.
    • (2008) Chem. Eng. J. , vol.139 , pp. 339-343
    • Asakura, Y.1    Yasuda, K.2    Kato, D.3    Kojima, Y.4    Koda, S.5
  • 10
    • 38049042307 scopus 로고    scopus 로고
    • Decomposition driven interface evolution for layers of binary mixtures. I. Model derivation and stratified base states
    • Thiele U., Madruga S., Frastia L. Decomposition driven interface evolution for layers of binary mixtures. I. Model derivation and stratified base states. Phys. Fluids 2007, 19:122106-122110.
    • (2007) Phys. Fluids , vol.19 , pp. 122106-122110
    • Thiele, U.1    Madruga, S.2    Frastia, L.3
  • 11
    • 0036474753 scopus 로고    scopus 로고
    • Predicting gas-liquid flow in a mechanically stirred tank
    • Lane G.L., Schwarz M.P., Evans G.M. Predicting gas-liquid flow in a mechanically stirred tank. Appl. Math. Model. 2002, 26:223-235.
    • (2002) Appl. Math. Model. , vol.26 , pp. 223-235
    • Lane, G.L.1    Schwarz, M.P.2    Evans, G.M.3
  • 12
    • 77955924070 scopus 로고    scopus 로고
    • A study of bubble trajectory and drag co-efficient in water and non-Newtonian fluids
    • Hassan N.M.S., Khan M.M.K., Rasul M.G. A study of bubble trajectory and drag co-efficient in water and non-Newtonian fluids. WSEAS Trans. Fluid Mech. 2008, 3:261-270.
    • (2008) WSEAS Trans. Fluid Mech. , vol.3 , pp. 261-270
    • Hassan, N.M.S.1    Khan, M.M.K.2    Rasul, M.G.3
  • 13
    • 77949275130 scopus 로고    scopus 로고
    • Theoretical prediction of cavitational activity distribution in sonochemical reactors
    • Sutkar V.S., Gogate P.R., Csoka L. Theoretical prediction of cavitational activity distribution in sonochemical reactors. Chem. Eng. J. 2010, 158:290-295.
    • (2010) Chem. Eng. J. , vol.158 , pp. 290-295
    • Sutkar, V.S.1    Gogate, P.R.2    Csoka, L.3
  • 14
    • 0034094311 scopus 로고    scopus 로고
    • Mapping the cavitational intensity in an ultrasonic bath using acoustic emission
    • Moholkar V.S., Sabale S., Pandit A.B. Mapping the cavitational intensity in an ultrasonic bath using acoustic emission. AIChE J. 2000, 46:684-694.
    • (2000) AIChE J. , vol.46 , pp. 684-694
    • Moholkar, V.S.1    Sabale, S.2    Pandit, A.B.3
  • 16
    • 0030083691 scopus 로고    scopus 로고
    • Effect of frequency on sonochemical reactions II. Temperature and intensity effects
    • Entezari M.H., Kruus P. Effect of frequency on sonochemical reactions II. Temperature and intensity effects. Ultrason. Sonochem. 1996, 3:19-24.
    • (1996) Ultrason. Sonochem. , vol.3 , pp. 19-24
    • Entezari, M.H.1    Kruus, P.2
  • 17
    • 0034970293 scopus 로고    scopus 로고
    • Ultrasound enhanced degradation of rhodamine B: optimization with power density
    • Sivakumar M., Pandit A.B. Ultrasound enhanced degradation of rhodamine B: optimization with power density. Ultrason. Sonochem. 2001, 8:233-240.
    • (2001) Ultrason. Sonochem. , vol.8 , pp. 233-240
    • Sivakumar, M.1    Pandit, A.B.2
  • 19
    • 77956494598 scopus 로고    scopus 로고
    • Effect of resonance frequency, power input, and saturation gas type on the oxidation efficiency of an ultrasound horn
    • Rooze J., Rebrov E.V., Schouten J.C., Keurentjes J.T.F. Effect of resonance frequency, power input, and saturation gas type on the oxidation efficiency of an ultrasound horn. Ultrason. Sonochem. 2011, 18:209-215.
    • (2011) Ultrason. Sonochem. , vol.18 , pp. 209-215
    • Rooze, J.1    Rebrov, E.V.2    Schouten, J.C.3    Keurentjes, J.T.F.4
  • 21
    • 63149148203 scopus 로고    scopus 로고
    • Mechanistic approach to intensification of sonochemical degradation of phenol
    • Sivasankar T., Moholkar V.S. Mechanistic approach to intensification of sonochemical degradation of phenol. Chem. Eng. J. 2009, 149:57-69.
    • (2009) Chem. Eng. J. , vol.149 , pp. 57-69
    • Sivasankar, T.1    Moholkar, V.S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.