메뉴 건너뛰기




Volumn , Issue , 2005, Pages 75-82

Clustering wih SOM: U*C

Author keywords

Clustering; Density based clustering algorithms; SOM; Visualization

Indexed keywords

CLUSTERING; CLUSTERING PROBLEMS; DENSITY-BASED CLUSTERING ALGORITHMS; DISTANCE INFORMATION; HIER-ARCHICAL CLUSTERING; HIGH DIMENSIONAL DATA; NEW CLUSTERING ALGORITHMS; SOM;

EID: 84890307265     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (176)

References (10)
  • 3
    • 0002432308 scopus 로고
    • Kohonen's self organizing feature maps for exploratory data analysis
    • Kluwer Academic Press, Paris
    • A. Ultsch, H.P. Siemon (1990), Kohonen's Self Organizing Feature Maps for Exploratory Data Analysis, Proc. Intern. Neural Networks, Kluwer Academic Press, Paris, 305-308.
    • (1990) Proc. Intern. Neural Networks , pp. 305-308
    • Ultsch, A.1    Siemon, H.P.2
  • 4
    • 24944572401 scopus 로고    scopus 로고
    • Maps for the visualization of high-dimensional data spaces
    • Kyushu, Japan
    • A. Ultsch(2003), Maps for the Visualization of high-dimensional Data Spaces, Proc. WSOM, Kyushu, Japan, 225-230.
    • (2003) Proc. WSOM , pp. 225-230
    • Ultsch, A.1
  • 5
    • 0026172104 scopus 로고
    • Watersheds in digital spaces: An efficient algorithm based on im-mersion simulations
    • V. Luc, P. Soille(1991), Watersheds in Digital Spaces: An Efficient Algorithm Based on Im-mersion Simulations, IEEE Transactions of Pattern Analysis and Machine Intelligence, Vol. 13(6), 583-598.
    • (1991) IEEE Transactions of Pattern Analysis and Machine Intelligence , vol.13 , Issue.6 , pp. 583-598
    • Luc, V.1    Soille, P.2
  • 6
    • 0001931484 scopus 로고    scopus 로고
    • Data mining and knowledge discovery with emergent self-organizing feature maps for multivariate time series
    • E. Oja, S. Kaski (eds)
    • A. Ultsch(1999), Data Mining and Knowledge Discovery with Emergent Self-Organizing Feature Maps for Multivariate Time Series, E. Oja, S. Kaski (eds), Kohonen Maps, 33-46.
    • (1999) Kohonen Maps , pp. 33-46
    • Ultsch, A.1
  • 7
    • 84874010519 scopus 로고    scopus 로고
    • Analysis and visualisation of gene expression data using self organizing maps
    • S. Kaski et al (1999), Analysis and Visualisation of Gene Expression Data using Self Organizing Maps, Proc NSIP, 99-100.
    • (1999) Proc NSIP , pp. 99-100
    • Kaski, S.1
  • 8
    • 26944499910 scopus 로고    scopus 로고
    • *-matrix: A tool to visualize clusters in high dimensional data
    • Research Report 36
    • *-Matrix: A Tool to visualize Clusters in high dimensional Data, Dept. of Computer Science University of Marburg, Research Report 36.
    • (2003) Dept. of Computer Science University of Marburg
    • Ultsch, A.1
  • 9
    • 84887008619 scopus 로고    scopus 로고
    • The architecture of emergent self-organizing maps to reduce projection errors
    • Brugges 2005
    • A. Ultsch, L. Herrmann (2005), The architecture of Emergent Self-Organizing Maps to reduce projection errors, ESANN, Brugges 2005, pp 1-6.
    • (2005) ESANN , pp. 1-6
    • Ultsch, A.1    Herrmann, L.2
  • 10
    • 84890284307 scopus 로고    scopus 로고
    • ESOM-maps: Tools for clustering, visualization, and classification with ESOM
    • Research Report. 46
    • A. Ultsch, F. Mörchen(2005), ESOM-Maps: tools for clustering, visualization, and classification with ESOM, Dept. of Computer Science Univ. of Marburg, Research Report. 46.
    • (2005) Dept. of Computer Science Univ. of Marburg
    • Ultsch, A.1    Mörchen, F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.