메뉴 건너뛰기




Volumn , Issue , 2005, Pages 471-478

A hierarchically growing Hyperbolic Self-Organizing Map for rapid structuring of large data sets

Author keywords

Exploratory Data Analysis; Growing network; Hierarchical Clustering; Hyperbolic Self Organizing Maps

Indexed keywords

BENCHMARK DATASETS; CLASSIFICATION ERRORS; EXPLORATORY DATA ANALYSIS; HIER-ARCHICAL CLUSTERING; INCREMENTAL TRAINING; QUANTIZATION ERRORS; SPECIAL STRUCTURE; VISUALIZATION ALGORITHMS;

EID: 84890288907     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (12)

References (13)
  • 2
    • 0035108235 scopus 로고    scopus 로고
    • A hierarchical unsupervised growing neural network for clustering gene expression patterns
    • J. Herrero, A. Valencia, and J. Dopazo. A hierarchical unsupervised growing neural network for clustering gene expression patterns. Bioinformatics, 17(2): 126-136, 2001.
    • (2001) Bioinformatics , vol.17 , Issue.2 , pp. 126-136
    • Herrero, J.1    Valencia, A.2    Dopazo, J.3
  • 3
    • 0003410791 scopus 로고    scopus 로고
    • Springer Series in Information Sciences. 3rd edition
    • T. Kohonen. Self-Organizing Maps. Springer Series in Information Sciences. 3rd edition, 2001.
    • (2001) Self-Organizing Maps
    • Kohonen, T.1
  • 4
    • 0025559249 scopus 로고
    • Self-organizing hierarchical feature maps
    • P. Koikkalainen and E. Oja. Self-organizing hierarchical feature maps. In Proc. of the IJCNN 1990, volume II, pages 279-285, 1990.
    • (1990) Proc. of the IJCNN 1990 , vol.2 , pp. 279-285
    • Koikkalainen, P.1    Oja, E.2
  • 7
    • 0032121774 scopus 로고    scopus 로고
    • Exploring large graphs in 3D hyperbolic space
    • July/August
    • T. Munzner. Exploring large graphs in 3D hyperbolic space. IEEE Computer Graphics and Applications, 18(4): 18-23 July/August 1998.
    • (1998) IEEE Computer Graphics and Applications , vol.18 , Issue.4 , pp. 18-23
    • Munzner, T.1
  • 9
    • 10844245841 scopus 로고    scopus 로고
    • The evolving tree, a new kind of self-organizing neural network
    • Kitakyushu, Japan, September
    • J. Pakkanen. The Evolving Tree, a new kind of self-organizing neural network. In Proceedings of the Workshop on Self-Organizing Maps '03, pages 311-316, Kitakyushu, Japan, September 2003.
    • (2003) Proceedings of the Workshop on Self-Organizing Maps '03 , pp. 311-316
    • Pakkanen, J.1
  • 10
    • 10844255636 scopus 로고    scopus 로고
    • The evolving tree - A novel self-organizing network for data analysis
    • December
    • J. Pakkanen, J. Iivarinen, and E. Oja. The evolving tree - a novel self-organizing network for data analysis. Neural Processing Letters, 20(3): 199-211, December 2004.
    • (2004) Neural Processing Letters , vol.20 , Issue.3 , pp. 199-211
    • Pakkanen, J.1    Iivarinen, J.2    Oja, E.3
  • 11
    • 0036859375 scopus 로고    scopus 로고
    • The growing hierarchical self-organizing map: Exploratory analysis of high-dimensional data
    • A. Rauber, D. Merkl, and M. Dittenbach. The growing hierarchical self-organizing map: exploratory analysis of high-dimensional data. IEEE Transactions on Neural Networks, 13(6): 1331-1341, 2002.
    • (2002) IEEE Transactions on Neural Networks , vol.13 , Issue.6 , pp. 1331-1341
    • Rauber, A.1    Merkl, D.2    Dittenbach, M.3
  • 12
    • 0002129811 scopus 로고    scopus 로고
    • Self-organizing maps in non-euclidian spaces
    • E. Oja and S. Kaski, editors Amer Elsevier
    • H. Ritter. Self-organizing maps in non-euclidian spaces. In E. Oja and S. Kaski, editors, Kohonen Maps, pages 97-110. Amer Elsevier, 1999.
    • (1999) Kohonen Maps , pp. 97-110
    • Ritter, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.