메뉴 건너뛰기




Volumn 405, Issue 28, 2013, Pages 9219-9234

Feature selection of gas chromatography/mass spectrometry chemical profiles of basil plants using a bootstrapped fuzzy rule-building expert system

Author keywords

Bootstrap; Feature selection; FOAM; FuRES; GC MS; PLS DA; SIMCA

Indexed keywords

BOOTSTRAP; FURES; GC/MS; PLS-DA; SIMCA;

EID: 84890103332     PISSN: 16182642     EISSN: 16182650     Source Type: Journal    
DOI: 10.1007/s00216-013-7327-x     Document Type: Article
Times cited : (8)

References (16)
  • 2
    • 84874594786 scopus 로고    scopus 로고
    • Authentication of organic and conventional basils from gas chromatography/mass spectrometry chemical profiles
    • 10.1021/ac303445v 1:CAS:528:DC%2BC3sXitlChu7s%3D
    • Wang Z, Chen P, Liangli Y, Harrington PB (2013) Authentication of organic and conventional basils from gas chromatography/mass spectrometry chemical profiles. Anal Chem 85:2945-2953
    • (2013) Anal Chem , vol.85 , pp. 2945-2953
    • Wang, Z.1    Chen, P.2    Liangli, Y.3    Harrington, P.B.4
  • 3
    • 34250809797 scopus 로고    scopus 로고
    • Wlodzislaw Duch Feature Extraction, Foundations, and Applications 89-118
    • Wlodzislaw Duch. (2006) Filter methods. Feature Extraction, Foundations, and Applications 89-118
    • (2006) Filter Methods
  • 5
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • Guyon I, Elisseeff A (2003) An introduction to variable and feature selection. J Mach Learning Res 3:1157-1182
    • (2003) J Mach Learning Res , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 7
    • 1642380461 scopus 로고    scopus 로고
    • The problem of overfitting
    • 10.1021/ci0342472
    • Hawkins DM (2004) The problem of overfitting. J Chem Info Comp Sci 14:1-12
    • (2004) J Chem Info Comp Sci , vol.14 , pp. 1-12
    • Hawkins, D.M.1
  • 8
    • 0001212160 scopus 로고
    • Fuzzy multivariate rule-building expert systems: Minimal neural networks
    • 10.1002/cem.1180050506
    • Harrington PB (1991) Fuzzy multivariate rule-building expert systems: minimal neural networks. J Chemometrics 5:467-486
    • (1991) J Chemometrics , vol.5 , pp. 467-486
    • Harrington, P.B.1
  • 9
    • 38049041189 scopus 로고    scopus 로고
    • Bootstrap tutorial
    • Varian H (2005) Bootstrap tutorial. Mathematica J 9:768-775
    • (2005) Mathematica J , vol.9 , pp. 768-775
    • Varian, H.1
  • 10
    • 34548539383 scopus 로고    scopus 로고
    • Bootstrap classification and point-based feature selection from age-staged mouse cerebellum tissues of matrix assisted laser desorption/ionization mass spectra using a fuzzy rule-building expert system
    • 10.1016/j.aca.2007.08.007 1:CAS:528:DC%2BD2sXhtVGis7%2FP
    • Harrington PB, Laurent C, Levinson DF, Levitt P, Markey SP (2007) Bootstrap classification and point-based feature selection from age-staged mouse cerebellum tissues of matrix assisted laser desorption/ionization mass spectra using a fuzzy rule-building expert system. Anal Chim Act 599:219-231
    • (2007) Anal Chim Act , vol.599 , pp. 219-231
    • Harrington, P.B.1    Laurent, C.2    Levinson, D.F.3    Levitt, P.4    Markey, S.P.5
  • 11
    • 33751425157 scopus 로고    scopus 로고
    • Statistical validation of classification and calibration models using bootstrapped Latin partitions
    • Harrington PB (2006) Statistical validation of classification and calibration models using bootstrapped Latin partitions. TrAC 25:1112-1124
    • (2006) TrAC , vol.25 , pp. 1112-1124
    • Harrington, P.B.1
  • 12
    • 38949156621 scopus 로고    scopus 로고
    • A modified t-test feature selection method and its application on the HapMap genotype data
    • 10.1016/S1672-0229(08)60011-X
    • Zhou N, Wang L (2007) A modified t-test feature selection method and its application on the HapMap genotype data. Genomics, Proteomics Bioinformatics 5:242-249
    • (2007) Genomics, Proteomics Bioinformatics , vol.5 , pp. 242-249
    • Zhou, N.1    Wang, L.2
  • 15
    • 84890099533 scopus 로고    scopus 로고
    • wikipedia.org. 68-95-99.7 rule (accessed June 25, 2013)
    • wikipedia.org. 68-95-99.7 rule. http://en.wikipedia.org/wiki/68-95-99.7- rule (accessed June 25, 2013)
  • 16
    • 84890445089 scopus 로고    scopus 로고
    • Overfitting in making comparisons between variable selection methods
    • Reunanen J (2003) Overfitting in making comparisons between variable selection methods. J Mach Learning Res 3:1371-1382
    • (2003) J Mach Learning Res , vol.3 , pp. 1371-1382
    • Reunanen, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.