-
1
-
-
36549027868
-
A Dai-Yuan conjugate gradient algorithm with sufficient descent and conjugacy conditions for unconstrained optimization
-
N. Andrei, A Dai-Yuan conjugate gradient algorithm with sufficient descent and conjugacy conditions for unconstrained optimization, Applied Mathematics Letters, 21 (2008), 165-171
-
(2008)
Applied Mathematics Letters
, vol.21
, pp. 165-171
-
-
Andrei, N.1
-
2
-
-
77955270461
-
New accelerated conjugate gradient algorithms as a modification of Dai-Yuan's computational scheme for unconstrained optimization
-
N. Andrei, New accelerated conjugate gradient algorithms as a modification of Dai-Yuan's computational scheme for unconstrained optimization, Journal of Computational and Applied Mathematics, 234 (2010), 3397-3410
-
(2010)
Journal of Computational and Applied Mathematics
, vol.234
, pp. 3397-3410
-
-
Andrei, N.1
-
3
-
-
0000024679
-
CUTE: Constrained and un-constrained testing environments
-
I. Bongartz, A. R. Conn, N. I. M. Gould and P. L. Toint, CUTE: Constrained and un-constrained testing environments, ACM Transactions on Mathematical Software, 21 (1995), 123-160
-
(1995)
ACM Transactions on Mathematical Software
, vol.21
, pp. 123-160
-
-
Bongartz, I.1
Conn, A.R.2
Gould, N.I.M.3
Toint, P.L.4
-
4
-
-
0036724614
-
Global convergence of a two-parameter family of conjugate gradient methods without line search
-
X. Chen and J. Sun, Global convergence of a two-parameter family of conjugate gradient methods without line search, Journal of Computational and Applied Mathematics, 146 (2002), 37-45
-
(2002)
Journal of Computational and Applied Mathematics
, vol.146
, pp. 37-45
-
-
Chen, X.1
Sun, J.2
-
6
-
-
84875952768
-
-
(eds. J. J. Cochran, L. A. Cox, Jr., P. Keskinocak, J. P. Kharoufeh and J. C. Smith), John Wiley & Sons, (2011)
-
Y. H. Dai, Nonlinear conjugate gradient methods, in "Wiley Encyclopedia of Operations Research and Management Science" (eds. J. J. Cochran, L. A. Cox, Jr., P. Keskinocak, J. P. Kharoufeh and J. C. Smith), John Wiley & Sons, (2011)
-
Nonlinear conjugate gradient methods, in "Wiley Encyclopedia of Operations Research and Management Science"
-
-
Dai, Y.H.1
-
7
-
-
0034831849
-
New conjugacy conditions and related nonlinear conjugate gradient methods
-
Y. H. Dai and L. Z. Liao, New conjugacy conditions and related nonlinear conjugate gradient methods, Applied Mathematics and Optimization, 43 (2001), 87-101
-
(2001)
Applied Mathematics and Optimization
, vol.43
, pp. 87-101
-
-
Dai, Y.H.1
Liao, L.Z.2
-
8
-
-
0033266804
-
A nonlinear conjugate gradient method with a strong global conver-gence property
-
Y. H. Dai and Y. Yuan, A nonlinear conjugate gradient method with a strong global conver-gence property, SIAM Journal on Optimization, 10 (1999), 177-182
-
(1999)
SIAM Journal on Optimization
, vol.10
, pp. 177-182
-
-
Dai, Y.H.1
Yuan, Y.2
-
9
-
-
0035611321
-
A three-parameter family of nonlinear conjugate gradient methods
-
Y. H. Dai and Y. Yuan, A three-parameter family of nonlinear conjugate gradient methods, Mathematics of Computation, 70 (2001), 1155-1167
-
(2001)
Mathematics of Computation
, vol.70
, pp. 1155-1167
-
-
Dai, Y.H.1
Yuan, Y.2
-
10
-
-
80052968044
-
Global convergence of some modified PRP nonlinear conjugate gradient methods
-
Z. Dai and B. S. Tian, Global convergence of some modified PRP nonlinear conjugate gradient methods, Optimization Letters, 5 (2011), 615-630
-
(2011)
Optimization Letters
, vol.5
, pp. 615-630
-
-
Dai, Z.1
Tian, B.S.2
-
11
-
-
79953236946
-
A modified CG-DESCENT method for unconstrained optimization
-
Z. Dai and F. Wen, A modified CG-DESCENT method for unconstrained optimization, Jour-nal of Computational and Applied Mathematics, 235 (2011), 3332-3341
-
(2011)
Jour-nal of Computational and Applied Mathematics
, vol.235
, pp. 3332-3341
-
-
Dai, Z.1
Wen, F.2
-
12
-
-
28244496090
-
Benchmarking optimization software with performance profiles
-
E. D. Dolan and J. J. Moré, Benchmarking optimization software with performance profiles, Mathematical Programming, 91 (2002), 201-213
-
(2002)
Mathematical Programming
, vol.91
, pp. 201-213
-
-
Dolan, E.D.1
Moré, J.J.2
-
14
-
-
0000615669
-
Function minimization by conjugate gradients
-
R. Fletcher and C. M. Reeves, Function minimization by conjugate gradients, The Computer Journal, 7 (1964), 149-154
-
(1964)
The Computer Journal
, vol.7
, pp. 149-154
-
-
Fletcher, R.1
Reeves, C.M.2
-
15
-
-
2442598318
-
CUTEr and SifDec: A constrained and uncon-strained testing environment
-
N. I. M. Gould, D. Orban and P. L. Toint, CUTEr and SifDec: A constrained and uncon-strained testing environment, revisited, ACM Transactions on Mathematical Software, 29 (2003), 373-394
-
(2003)
revisited, ACM Transactions on Mathematical Software
, vol.29
, pp. 373-394
-
-
Gould, N.I.M.1
Orban, D.2
Toint, P.L.3
-
16
-
-
33144465578
-
A new conjugate gradient method with guaranteed descent and an efficient line search
-
W. W. Hager and H. Zhang, A new conjugate gradient method with guaranteed descent and an efficient line search, SIAM Journal on Optimization, 16 (2005), 170-192
-
(2005)
SIAM Journal on Optimization
, vol.16
, pp. 170-192
-
-
Hager, W.W.1
Zhang, H.2
-
17
-
-
33745276908
-
A survey of nonlinear conjugate gradient methods
-
W. W. Hager and H. Zhang, A survey of nonlinear conjugate gradient methods, Pacific Journal of Optimization, 2 (2006), 35-58
-
(2006)
Pacific Journal of Optimization
, vol.2
, pp. 35-58
-
-
Hager, W.W.1
Zhang, H.2
-
18
-
-
79957475540
-
-
University of Florida, November 14
-
W. W. Hager and H. Zhang, "CG DESCENT Version 1.4, User's Guide," University of Florida, November 14, 2005, http://www.math.ufl.edu/~hager/papers/CG/
-
(2005)
"CG DESCENT Version 1.4, User's Guide,"
-
-
Hager, W.W.1
Zhang, H.2
-
20
-
-
80052262023
-
A sufficient descent LS conjugate gradient method for unconstrained optimization problems
-
M. Li and H. Feng, A sufficient descent LS conjugate gradient method for unconstrained optimization problems, Applied Mathematics and Computation, 218 (2011), 1577-1586
-
(2011)
Applied Mathematics and Computation
, vol.218
, pp. 1577-1586
-
-
Li, M.1
Feng, H.2
-
21
-
-
0026142704
-
Efficient generalized conjugate gradient algorithm
-
Y. Liu and C. Storey, Efficient generalized conjugate gradient algorithms, part 1: Theory, Journal of Optimization Theory and Applications, 69 (1991), 129-137
-
(1991)
part 1: Theory, Journal of Optimization Theory and Applications
, vol.69
, pp. 129-137
-
-
Liu, Y.1
Storey, C.2
-
22
-
-
84862841641
-
Conjugate gradient methods based on secant conditions that generate descent search directions for unconstrained optimization
-
Y. Narushima and H. Yabe, Conjugate gradient methods based on secant conditions that generate descent search directions for unconstrained optimization, Journal of Computational and Applied Mathematics, 236 (2012), 4303-4317
-
(2012)
Journal of Computational and Applied Mathematics
, vol.236
, pp. 4303-4317
-
-
Narushima, Y.1
Yabe, H.2
-
23
-
-
79957454185
-
A three-term conjugate gradient method with sufficient descent property for unconstrained optimization
-
Y. Narushima, H. Yabe and J. A. Ford, A three-term conjugate gradient method with sufficient descent property for unconstrained optimization, SIAM Journal on Optimization, 21 (2011), 212-230
-
(2011)
SIAM Journal on Optimization
, vol.21
, pp. 212-230
-
-
Narushima, Y.1
Yabe, H.2
Ford, J.A.3
-
24
-
-
0003982971
-
-
2nd edition, Springer Series in Op-erations Research and Financial Engineering, Springer
-
J. Nocedal and S. J. Wright, "Numerical Optimization," 2nd edition, Springer Series in Op-erations Research and Financial Engineering, Springer, 2006
-
(2006)
"Numerical Optimization,"
-
-
Nocedal, J.1
Wright, S.J.2
-
25
-
-
84860638013
-
Globally convergent three-term conjugate gradient methods that use secant conditions and generate descent search directions for unconstrained optimization
-
K. Sugiki, Y. Narushima and H. Yabe, Globally convergent three-term conjugate gradient methods that use secant conditions and generate descent search directions for unconstrained optimization, Journal of Optimization Theory and Applications, 153 (2012), 733-757
-
(2012)
Journal of Optimization Theory and Applications
, vol.153
, pp. 733-757
-
-
Sugiki, K.1
Narushima, Y.2
Yabe, H.3
-
27
-
-
40249089958
-
Spectral conjugate gradient methods with sufficient descent property for large-scale unconstrained optimization
-
G. Yu, L. Guan and W. Chen, Spectral conjugate gradient methods with sufficient descent property for large-scale unconstrained optimization, Optimization Methods and Software, 23 (2008), 275-293
-
(2008)
Optimization Methods and Software
, vol.23
, pp. 275-293
-
-
Yu, G.1
Guan, L.2
Chen, W.3
-
28
-
-
56649100496
-
Global convergence of modified Polak-Ribière-Polyak conjugate gradient methods with sufficient descent property
-
G. Yu, L. Guan and G. Li, Global convergence of modified Polak-Ribière-Polyak conjugate gradient methods with sufficient descent property, Journal of Industrial and Management Optimization, 4 (2008), 565-579
-
(2008)
Journal of Industrial and Management Optimization
, vol.4
, pp. 565-579
-
-
Yu, G.1
Guan, L.2
Li, G.3
-
29
-
-
67650498880
-
Modified nonlinear conjugate gradient methods with sufficient descent property for large-scale optimization problems
-
G. Yuan, Modified nonlinear conjugate gradient methods with sufficient descent property for large-scale optimization problems, Optimization Letters, 3 (2009), 11-21
-
(2009)
Optimization Letters
, vol.3
, pp. 11-21
-
-
Yuan, G.1
-
30
-
-
79959186939
-
A new globalization technique for nonlinear conjugate gradient methods for nonconvex minimization
-
L. Zhang and J. Li, A new globalization technique for nonlinear conjugate gradient methods for nonconvex minimization, Applied Mathematics and Computation, 217 (2011), 10295-10304
-
(2011)
Applied Mathematics and Computation
, vol.217
, pp. 10295-10304
-
-
Zhang, L.1
Li, J.2
-
31
-
-
33749239442
-
Global convergence of a modified Fletcher-Reeves conjugate gradient method with Armijo-type line search
-
L. Zhang, W. Zhou and D. H. Li, Global convergence of a modified Fletcher-Reeves conjugate gradient method with Armijo-type line search, Numerische Mathematik, 104 (2006), 561-572
-
(2006)
Numerische Mathematik
, vol.104
, pp. 561-572
-
-
Zhang, L.1
Zhou, W.2
Li, D.H.3
|