메뉴 건너뛰기




Volumn 43, Issue 6, 2013, Pages 1822-1834

Lazy collaborative filtering for data sets with missing values

Author keywords

Imputation; Neighborhood based collaborative filtering (CF); Recommender systems

Indexed keywords

DATA SPARSITY; HISTORICAL INFORMATION; IMPUTATION; IMPUTATION METHODS; MISSING VALUES; NEIGHBORHOOD-BASED COLLABORATIVE FILTERING (CF); RECOMMENDATION METHODS;

EID: 84890016550     PISSN: 21682267     EISSN: None     Source Type: Journal    
DOI: 10.1109/TSMCB.2012.2231411     Document Type: Article
Times cited : (43)

References (34)
  • 1
    • 20844435854 scopus 로고    scopus 로고
    • Toward the next generation of recommender systems:A survey of the state-Of-The-Art and possible extensions
    • DOI 10.1109/TKDE.2005.99
    • G. Adomavicius and A. Tuzhilin, "Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions," IEEE Trans. Knowl. Data Eng., vol. 17, no. 6, pp. 734-749, Jun. 2005. (Pubitemid 40860454)
    • (2005) IEEE Transactions on Knowledge and Data Engineering , vol.17 , Issue.6 , pp. 734-749
    • Adomavicius, G.1    Tuzhilin, A.2
  • 2
    • 81055135842 scopus 로고    scopus 로고
    • A comprehensive survey of neighborhoodbased recommendation methods
    • F. Ricci, L. Rokach, B. Shapira, and P. B. Kantor, Eds. New York: Springer-Verlag, ch. 4
    • C. Desrosiers and G. Karypis, "A comprehensive survey of neighborhoodbased recommendation methods," in Recommender Systems Handbook, F. Ricci, L. Rokach, B. Shapira, and P. B. Kantor, Eds. New York: Springer-Verlag, 2011, ch. 4, pp. 107-144.
    • (2011) Recommender Systems Handbook , pp. 107-144
    • Desrosiers, C.1    Karypis, G.2
  • 3
    • 57349146373 scopus 로고    scopus 로고
    • Lessons from the Netflix prize challenge
    • Dec
    • R.M. Bell and Y. Koren, "Lessons from the Netflix prize challenge," ACM SIGKDD Expl. Newslett., vol. 9, no. 2, pp. 75-79, Dec. 2007.
    • (2007) ACM SIGKDD Expl. Newslett , vol.9 , Issue.2 , pp. 75-79
    • Bell, R.M.1    Koren, Y.2
  • 7
    • 72249094333 scopus 로고    scopus 로고
    • Exploiting user similarity based on rateditem pools for improved user-based collaborative filtering
    • M. Larson and A. Hanjalic, "Exploiting user similarity based on rateditem pools for improved user-based collaborative filtering," in Proc. 3rd ACM Conf. Recommender Syst., 2009, pp. 125-132.
    • (2009) Proc. 3rd ACM Conf. Recommender Syst , pp. 125-132
    • Larson, M.1    Hanjalic, A.2
  • 8
    • 84885578920 scopus 로고    scopus 로고
    • Scalable collaborative filtering using cluster-based smoothing
    • G.-R. Xue, C. Lin, Q. Yang, W. Xi, H.-J. Zeng, Y. Yu, and Z. Chen, "Scalable collaborative filtering using cluster-based smoothing," in Proc. SIGIR, 2005, pp. 114-121.
    • (2005) Proc. SIGIR , pp. 114-121
    • Xue, G.-R.1    Lin, C.2    Yang, Q.3    Xi, W.4    Zeng, H.-J.5    Yu, Y.6    Chen, Z.7
  • 10
    • 55849109602 scopus 로고    scopus 로고
    • A mixture imputationboosted collaborative filter
    • X. Su, T. M. Khoshgoftaar, and R. Greiner, "A mixture imputationboosted collaborative filter," in Proc. FLAIRS Conf., 2008, pp. 312-316.
    • (2008) Proc. FLAIRS Conf , pp. 312-316
    • Su, X.1    Khoshgoftaar, T.M.2    Greiner, R.3
  • 11
    • 78649402552 scopus 로고    scopus 로고
    • Missing value estimation for mixed-attribute data sets
    • Jan
    • X. Zhu, S. Zhang, Z. Jin, Z. Zhang, and Z. Xu, "Missing value estimation for mixed-attribute data sets," IEEE Trans. Knowl. Data Eng., vol. 23, no. 1, pp. 110-121, Jan. 2011.
    • (2011) IEEE Trans. Knowl. Data Eng , vol.23 , Issue.1 , pp. 110-121
    • Zhu, X.1    Zhang, S.2    Jin, Z.3    Zhang, Z.4    Xu, Z.5
  • 12
    • 78951483757 scopus 로고    scopus 로고
    • Missing data imputation by utilizing information within incomplete instances
    • Mar
    • S. Zhang, Z. Jin, and X. Zhu, "Missing data imputation by utilizing information within incomplete instances," J. Syst. Softw., vol. 84, no. 3, pp. 452-459, Mar. 2011.
    • (2011) J. Syst. Softw , vol.84 , Issue.3 , pp. 452-459
    • Zhang, S.1    Jin, Z.2    Zhu, X.3
  • 13
    • 79959375445 scopus 로고    scopus 로고
    • Shell-neighbor method and its application in missing data imputation
    • Aug
    • S. Zhang, "Shell-neighbor method and its application in missing data imputation," Appl. Intell., vol. 35, no. 1, pp. 123-133, Aug. 2011.
    • (2011) Appl. Intell , vol.35 , Issue.1 , pp. 123-133
    • Zhang, S.1
  • 14
    • 84915212583 scopus 로고
    • Estimation by the nearest neighbor rule
    • Jan
    • T. Cover, "Estimation by the nearest neighbor rule," IEEE Trans. Inf. Theory, vol. IT-14, no. 1, pp. 50-55, Jan. 1968.
    • (1968) IEEE Trans. Inf. Theory , vol.14 , Issue.1 , pp. 50-55
    • Cover, T.1
  • 16
    • 0342707562 scopus 로고
    • Learning binary relations using weighted majority voting
    • Sep
    • S. A. Goldman and M. K. Warmuth, "Learning binary relations using weighted majority voting," Mach. Learn., vol. 20, no. 3, pp. 245-271, Sep. 1995.
    • (1995) Mach. Learn , vol.20 , Issue.3 , pp. 245-271
    • Goldman, S.A.1    Warmuth, M.K.2
  • 19
    • 0013248646 scopus 로고    scopus 로고
    • Collaborative filtering using weighted majority prediction algorithms
    • A. Nakamura and N. Abe, "Collaborative filtering using weighted majority prediction algorithms," in Proc. Int. Conf. Mach. Learn., 1998, pp. 395-403.
    • (1998) Proc. Int. Conf. Mach. Learn , pp. 395-403
    • Nakamura, A.1    Abe, N.2
  • 21
    • 23144455973 scopus 로고    scopus 로고
    • Recommender systems for largescale e-commerce: Scalable neighborhood formation using clustering
    • B. Sarwar, G. Karypis, and J. Konstan, "Recommender systems for largescale e-commerce: Scalable neighborhood formation using clustering," in Proc. 5th Int. Conf. Comput. Inf. Technol., 2002, pp. 1-6.
    • (2002) Proc. 5th Int. Conf. Comput. Inf. Technol , pp. 1-6
    • Sarwar, B.1    Karypis, G.2    Konstan, J.3
  • 22
    • 84862271600 scopus 로고    scopus 로고
    • Latent class models for collaborative filtering
    • T. Hofmann and J. Puzicha, "Latent class models for collaborative filtering," in Proc. Int. Joint Conf. Artif. Intell., 1999, vol. 16, pp. 688-693.
    • (1999) Proc. Int. Joint Conf. Artif. Intell , vol.16 , pp. 688-693
    • Hofmann, T.1    Puzicha, J.2
  • 23
    • 34548756009 scopus 로고    scopus 로고
    • Slope one predictors for online ratingbased collaborative filtering
    • D. Lemire and A. Maclachlan, "Slope one predictors for online ratingbased collaborative filtering," in Proc. SDM, 2005, pp. 1-5.
    • (2005) Proc. SDM , pp. 1-5
    • Lemire, D.1    Maclachlan, A.2
  • 25
    • 65449121157 scopus 로고    scopus 로고
    • Factorization meets the neighborhood: A multifaceted collaborative filtering model
    • Y. Koren, "Factorization meets the neighborhood: A multifaceted collaborative filtering model," in Proc. SIGKDD, 2008, pp. 426-434.
    • (2008) Proc. SIGKDD , pp. 426-434
    • Koren, Y.1
  • 26
    • 36849079891 scopus 로고    scopus 로고
    • Modeling relationships at multiple scales to improve accuracy of large recommender systems
    • R. Bell, Y. Koren, and C. Volinsky, "Modeling relationships at multiple scales to improve accuracy of large recommender systems," in Proc. 13th Int. Conf. ACM SIGKDD Mining, 2007, pp. 95-104.
    • (2007) Proc. 13th Int. Conf. ACM SIGKDD Mining
    • Bell, R.1    Koren, Y.2    Volinsky, C.3
  • 27
    • 8644228708 scopus 로고    scopus 로고
    • A collaborative filtering algorithm and evaluation metric that accurately model the user experience
    • M. R. Mclaughlin and J. L. Herlocker, "A collaborative filtering algorithm and evaluation metric that accurately model the user experience," in Proc. SIGIR, 2004, pp. 329-336.
    • (2004) Proc. SIGIR , pp. 329-336
    • McLaughlin, M.R.1    Herlocker, J.L.2
  • 28
    • 78049304755 scopus 로고    scopus 로고
    • A novel approach to compute similarities and its application to item recommendation
    • C. Desrosiers and G. Karypis, "A novel approach to compute similarities and its application to item recommendation," in Proc. PRICAI, 2010, pp. 39-51.
    • (2010) Proc. PRICAI , pp. 39-51
    • Desrosiers, C.1    Karypis, G.2
  • 29
    • 84958760418 scopus 로고    scopus 로고
    • RecTree:An efficient collaborative filtering method
    • Data Warehousing and Knowledge Discovery
    • S. Chee, J. Han, and K. Wang, "Rectree: An efficient collaborative filtering method," in Proc. Data Warehousing Knowl. Discovery, 2001, pp. 141-151. (Pubitemid 33332762)
    • (2001) Lecture notes in computer science , Issue.2114 , pp. 141-151
    • Chee, S.H.S.1    Han, J.2    Wang, K.3
  • 31
    • 0000581356 scopus 로고
    • An introduction to Kernel and nearest-neighbor nonparametric regression
    • Aug
    • N. S. Altman, "An introduction to Kernel and nearest-neighbor nonparametric regression," Amer. Stat., vol. 46, no. 3, pp. 175-181, Aug. 1992.
    • (1992) Amer. Stat , vol.46 , Issue.3 , pp. 175-181
    • Altman, N.S.1
  • 32
    • 77954418047 scopus 로고    scopus 로고
    • A survey of collaborative filtering techniques
    • Jan
    • X. Su and T. M. Khoshgoftaar, "A survey of collaborative filtering techniques," Adv. Artif. Intell., vol. 2009, pp. 421425-1-421425-19, Jan. 2009.
    • (2009) Adv. Artif. Intell , vol.2009 , pp. 4214251-42142519
    • Su, X.1    Khoshgoftaar, T.M.2
  • 34
    • 33750345680 scopus 로고    scopus 로고
    • Unifying user-based and item-based collaborative filtering approaches by similarity fusion
    • J. Wang, A. P. de Vries, and M. J. T. Reinders, "Unifying user-based and item-based collaborative filtering approaches by similarity fusion," in Proc. SIGIR, 2006, pp. 501-508.
    • (2006) Proc. SIGIR , pp. 501-508
    • Wang, J.1    De Vries, A.P.2    Reinders, M.J.T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.