메뉴 건너뛰기




Volumn , Issue , 2008, Pages 79-111

A review of evolutionary algorithms for data mining

Author keywords

attribute construction; attribute selection; classification; clustering; genetic algorithm; genetic programming; multi objective optimization

Indexed keywords


EID: 84889983057     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1007/978-0-387-69935-6_4     Document Type: Chapter
Times cited : (51)

References (113)
  • 1
    • 0004190826 scopus 로고
    • (Sage University Pa-per Series on Quantitative Applications in the Social Sciences, No. 44) Sage Publications
    • Aldenderfer MS & Blashfield RK (1984) Cluster Analysis (Sage University Pa-per Series on Quantitative Applications in the Social Sciences, No. 44) Sage Publications.
    • (1984) Cluster Analysis
    • Aldenderfer, M.S.1    Blashfield, R.K.2
  • 2
    • 0346502997 scopus 로고    scopus 로고
    • A semantically guided and domain-independent evolutionary model for knowledge discovery from texts
    • Atkinson-Abutridy J, Mellishm C, and Aitken S (2003) A semantically guided and domain-independent evolutionary model for knowledge discovery from texts. IEEE Trans. Evolutionary Computation 7(6), 546-560.
    • (2003) IEEE Trans. Evolutionary Computation , vol.7 , Issue.6 , pp. 546-560
    • Atkinson-Abutridy, J.1    Mellishm, C.2    Aitken, S.3
  • 4
    • 33750272767 scopus 로고    scopus 로고
    • Smart crossover operator with multiple par-ents for a pittsburgh learning classifier system
    • (GECCO-2006), Morgan Kaufmann
    • Bacardit J and Krasnogor N (2006) Smart crossover operator with multiple par-ents for a Pittsburgh learning classifier system. Proc. Genetic & Evolutionary Computation Conf. (GECCO-2006), 1441-1448. Morgan Kaufmann.
    • (2006) Proc. Genetic & Evolutionary Computation Conf , pp. 1441-1448
    • Bacardit, J.1    Krasnogor, N.2
  • 8
    • 0000751098 scopus 로고    scopus 로고
    • Using learning to facilitate the evolution of features for recognizing visual concepts
    • Bala J, De Jong K, Huang J, Vafaie H and Wechsler H (1996) Using learning to facilitate the evolution of features for recognizing visual concepts. Evolutionary Computation 4(3): 297-312.
    • (1996) Evolutionary Computation , vol.4 , Issue.3 , pp. 297-312
    • Bala, J.1    De Jong, K.2    Huang, J.3    Vafaie, H.4    Wechsler, H.5
  • 9
    • 79956359210 scopus 로고    scopus 로고
    • Interactive evolution
    • In: T. Back, D.B. Fogel and T. Michalewicz (Eds.) Institute of Physics Pub
    • Banzhaf W (2000) Interactive evolution. In: T. Back, D.B. Fogel and T. Michalewicz (Eds.) Evolutionary Computation 1, 228-236. Institute of Physics Pub.
    • (2000) Evolutionary Computation , vol.1 , pp. 228-236
    • Banzhaf, W.1
  • 12
    • 0001896313 scopus 로고    scopus 로고
    • The process of knowledge discovery in databases: A human-centered approach
    • U.M. Fayyad et al (Eds. AAAI/MIT
    • Brachman RJ and Anand T. (1996) The process of knowledge discovery in databases: a human-centered approach. In: U.M. Fayyad et al (Eds.) Advances. in Knowledge Discovery and Data Mining, 37-58. AAAI/MIT.
    • (1996) Advances in Knowledge Discovery and Data Mining , pp. 37-58
    • Brachman, R.J.1    Anand, T.2
  • 23
    • 0002284602 scopus 로고
    • An investigation of niche and species formation in genetic function optimization
    • Deb K and Goldberg DE (1989). An investigation of niche and species formation in genetic function optimization. Proc. 2nd Int. Conf. Genetic Algorithms (ICGA-89), 42-49.
    • (1989) Proc. 2nd Int. Conf. Genetic Algorithms (ICGA-89 , pp. 42-49
    • Deb, K.1    Goldberg, D.E.2
  • 26
    • 27144442442 scopus 로고    scopus 로고
    • Discovering interesting patterns for invest-ment decision making with glower { a genetic learner overlaid with entropy reduction
    • Dhar V, Chou D and Provost F (2000). Discovering interesting patterns for invest-ment decision making with GLOWER { a genetic learner overlaid with entropy reduction. Data Mining and Knowledge Discovery 4(4), 251-280.
    • (2000) Data Mining and Knowledge Discovery , vol.4 , Issue.4 , pp. 251-280
    • Dhar, V.1    Chou, D.2    Provost, F.3
  • 27
    • 24644477574 scopus 로고    scopus 로고
    • Assessing the effectiveness of incorporating knowledge in an evolu-tionary concept learner
    • Springer
    • Divina F (2005) Assessing the effectiveness of incorporating knowledge in an evolu-tionary concept learner. Proc. EuroGP-2005 (European Conf. on Genetic Pro-gramming), LNCS 3447, 13-24, Springer.
    • (2005) Proc. EuroGP-2005 (European Conf. on Genetic Pro-gramming), LNCS , vol.3447 , pp. 13-24
    • Divina, F.1
  • 29
    • 14844362968 scopus 로고    scopus 로고
    • Handling continuous attributes in an evolutionary inductive learner
    • Feb. 2005
    • Divina F & Marchiori E (2005) Handling continuous attributes in an evolutionary inductive learner. IEEE Trans. Evolutionary Computation, 9(1), 31-43, Feb. 2005.
    • (2005) IEEE Trans. Evolutionary Computation , vol.9 , Issue.1 , pp. 31-43
    • Divina, F.1    Marchiori, E.2
  • 32
    • 3242723817 scopus 로고    scopus 로고
    • Evolutionary multi-objective feature selection and roc analysis with application to industrial machinery fault diagnosis
    • In: K. Gi-annakoglou et al. (Eds.) Barcelona: CIMNE
    • Emmanouilidis C (2002) Evolutionary multi-objective feature selection and ROC analysis with application to industrial machinery fault diagnosis. In: K. Gi-annakoglou et al. (Eds.) Evolutionary Methods for Design, Optimisation and Control. Barcelona: CIMNE.
    • (2002) Evolutionary Methods for Design, Optimisation and Control
    • Emmanouilidis, C.1
  • 33
    • 34547553651 scopus 로고    scopus 로고
    • Spatial clustering for data mining with ge-netic algorithms
    • Queensland University of Tech-nology. Australia
    • Estivill-Castro V and Murray AT (1997) Spatial clustering for data mining with ge-netic algorithms. Tech. Report FIT-TR-97-10. Queensland University of Tech-nology. Australia.
    • (1997) Tech. Report FIT-TR-97-10
    • Estivill-Castro, V.1    Murray, A.T.2
  • 39
    • 0035500276 scopus 로고    scopus 로고
    • Understanding the crucial role of attribute interaction in data mining
    • Freitas AA (2001) Understanding the crucial role of attribute interaction in data mining. Artificial Intelligence Review 16(3), 177-199.
    • (2001) Artificial Intelligence Review , vol.16 , Issue.3 , pp. 177-199
    • Freitas, A.A.1
  • 41
    • 0012141368 scopus 로고    scopus 로고
    • A survey of evolutionary algorithms for data mining and knowl-edge discovery
    • In: A. Ghosh and S. Tsutsui. (Eds.) Springer-Verlag
    • Freitas AA (2002b) A survey of evolutionary algorithms for data mining and knowl-edge discovery. In: A. Ghosh and S. Tsutsui. (Eds.) Advances in Evolutionary Computation, pp. 819-845. Springer-Verlag.
    • (2002) Advances in Evolutionary Computation , pp. 819-845
    • Freitas, A.A.1
  • 42
    • 3843098514 scopus 로고    scopus 로고
    • Evolutionary computation
    • In: W. Klosgen and J. Zytkow (Eds.) Oxford Univ. Press
    • Freitas AA (2002c). Evolutionary Computation. In: W. Klosgen and J. Zytkow (Eds.) Handbook of Data Mining and Knowledge Discovery, pp. 698-706:Oxford Univ. Press.
    • (2002) Handbook of Data Mining and Knowledge Discovery , pp. 698-706
    • Freitas, A.A.1
  • 43
    • 33645030729 scopus 로고    scopus 로고
    • A critical review of multi-objective optimization in data mining: A position paper
    • Dec. 2004
    • Freitas AA (2004) A critical review of multi-objective optimization in data mining: a position paper. ACM SIGKDD Explorations, 6(2), 77-86, Dec. 2004.
    • (2004) ACM SIGKDD Explorations , vol.6 , Issue.2 , pp. 77-86
    • Freitas, A.A.1
  • 44
    • 38349111002 scopus 로고    scopus 로고
    • Evolutionary algorithms for data mining
    • Springer O. Maimon and L. Rokach (Eds.
    • Freitas AA (2005) Evolutionary Algorithms for Data Mining. In: O. Maimon and L. Rokach (Eds.) The Data Mining and Knowledge Discovery Handbook, pp. 435-467. Springer.
    • (2005) The Data Mining and Knowledge Discovery Handbook , pp. 435-467
    • Freitas, A.A.1
  • 45
    • 76849098804 scopus 로고    scopus 로고
    • Are we really discovering "interesting" knowledge from data?
    • Autumn 2006
    • Freitas AA (2006) Are we really discovering "interesting" knowledge from data? Expert Update, Vol. 9, No. 1, 41-47, Autumn 2006.
    • (2006) Expert Update , vol.9 , Issue.1 , pp. 41-47
    • Freitas, A.A.1
  • 47
    • 0001851932 scopus 로고    scopus 로고
    • Tackling the boolean even n parity problem with genetic programming and limited-error fitness
    • Morgan Kaufmann
    • Gathercole C and Ross P (1997) Tackling the Boolean even N parity problem with genetic programming and limited-error fitness. Genetic Programming 1997: Proc. 2nd Conf. (GP-97), 119-127. Morgan Kaufmann.
    • (1997) Genetic Programming 1997: Proc. 2nd Conf. (GP-97 , pp. 119-127
    • Gathercole, C.1    Ross, P.2
  • 52
    • 42749090840 scopus 로고    scopus 로고
    • Genetic search for feature subset selection: A comparison between chc and genesis
    • Morgan Kaufmann
    • Guerra-Salcedo C and Whitley D (1998) Genetic search for feature subset selection: a comparison between CHC and GENESIS. Genetic Programming 1998: Proc. 3rd Annual Conf., 504-509. Morgan Kaufmann.
    • (1998) Genetic Programming 1998: Proc. 3rd Annual Conf , pp. 504-509
    • Guerra-Salcedo, C.1    Whitley, D.2
  • 59
    • 84889967674 scopus 로고    scopus 로고
    • Testing different sharing methods in concept learning
    • Turku Centre for Computer Science, Finland
    • Hekanaho J (1996) Testing different sharing methods in concept learning. TUCS Technical Report No. 71. Turku Centre for Computer Science, Finland.
    • (1996) TUCS Technical Report No. 71
    • Hekanaho, J.1
  • 61
    • 0003023369 scopus 로고    scopus 로고
    • A genetic programming approach to constructive induction
    • Morgan Kaufmann
    • Hu YJ (1998). A genetic programming approach to constructive induction. Genetic Programming 1998: Proc. 3rd Annual Conf., 146-151. Morgan Kaufmann.
    • (1998) Genetic Programming 1998: Proc. 3rd Annual Conf , pp. 146-151
    • Hu, Y.J.1
  • 63
    • 33645386802 scopus 로고    scopus 로고
    • Evolutionary multiobjective knowledge extraction for high-dimensional pattern classification problems
    • Springer
    • Ishibuchi H and Namba S (2004) Evolutionary multiobjective knowledge extraction for high-dimensional pattern classification problems. Proc. Parallel Problem Solving From Nature (PPSN-2004), LNCS 3242, 1123-1132, Springer.
    • (2004) Proc. Parallel Problem Solving From Nature (PPSN-2004), LNCS 3242 , pp. 1123-1132
    • Ishibuchi, H.1    Namba, S.2
  • 64
    • 31744440533 scopus 로고    scopus 로고
    • An organizational coevolutionary algorithm for classification
    • Feb. 2006
    • Jiao L, Liu J and Zhong W (2006) An organizational coevolutionary algorithm for classification. IEEE Trans. Evolutionary Computation, Vol. 10, No. 1, 67-80, Feb. 2006.
    • (2006) IEEE Trans. Evolutionary Computation , vol.10 , Issue.1 , pp. 67-80
    • Jiao, L.1    Liu, J.2    Zhong, W.3
  • 67
    • 84870060062 scopus 로고    scopus 로고
    • Discovery of genetic and en-vironmental interactions in disease data using evolutionary computation
    • G.B. Fogel and D.W. Corne (Eds.) Morgan Kaufmann
    • Jourdan L, Dhaenens-Flipo C and Talbi EG (2003) Discovery of genetic and en-vironmental interactions in disease data using evolutionary computation. In: G.B. Fogel and D.W. Corne (Eds.) Evolutionary Computation in Bioinformat-ics, 297-316. Morgan Kaufmann.
    • (2003) Evolutionary Computation in Bioinformat-ics , pp. 297-316
    • Jourdan, L.1    Dhaenens-Flipo, C.2    Talbi, E.G.3
  • 69
    • 35048845248 scopus 로고    scopus 로고
    • Structural risk minimization on decision trees: Using an evolution-ary multiobjective algorithm
    • Springer
    • Kim D (2004). Structural risk minimization on decision trees: using an evolution-ary multiobjective algorithm. Proc. 2004 European Conference on Genetic Pro-gramming (EuroGP-2004), LNCS 3003, 338-348, Springer.
    • (2004) Proc. 2004 European Conference on Genetic Pro-gramming (EuroGP-2004), LNCS , vol.3003 , pp. 338-348
    • Kim, D.1
  • 70
    • 63149100088 scopus 로고    scopus 로고
    • Combining advantages of new chromosome representation scheme and multi-objective genetic algorithms for better clustering
    • Korkmaz EE, Du J, Alhajj R and Barker (2006) Combining advantages of new chromosome representation scheme and multi-objective genetic algorithms for better clustering. Intelligent Data Analysis 10 (2006);163-182.
    • (2006) Intelligent Data Analysis , vol.2006 , Issue.10 , pp. 163-182
    • Korkmaz, E.E.1    Du, J.2    Alhajj, R.3    Barker4
  • 72
    • 27144450271 scopus 로고    scopus 로고
    • Genetic programming-based construction of features for machine learning and knowledge discovery tasks
    • Krawiec K (2002) Genetic programming-based construction of features for machine learning and knowledge discovery tasks. Genetic Programming and Evolvable Machines 3(4), 329-344.
    • (2002) Genetic Programming and Evolvable Machines , vol.3 , Issue.4 , pp. 329-344
    • Krawiec, K.1
  • 75
    • 0033640901 scopus 로고    scopus 로고
    • Comparison of algorithms that select features for pattern classifiers
    • Kudo M and Sklansky J (2000) Comparison of algorithms that select features for pattern classifiers. Pattern Recognition 33(2000), 25-41.
    • (2000) Pattern Recognition , vol.33 , Issue.2000 , pp. 25-41
    • Kudo, M.1    Sklansky, J.2
  • 79
    • 19044368486 scopus 로고    scopus 로고
    • Prototype induction and attribute selection via evo-lutionary algorithms
    • Llora X and Garrell J (2003) Prototype induction and attribute selection via evo-lutionary algorithms. Intelligent Data Analysis 7, 193-208.
    • (2003) Intelligent Data Analysis , vol.7 , pp. 193-208
    • Llora, X.1    Garrell, J.2
  • 83
    • 2442612917 scopus 로고    scopus 로고
    • A novel approach to design classifiers using genetic programming
    • April 2004
    • Muni DP, Pal NR and Das J (2004) A novel approach to design classifiers using genetic programming. IEEE Trans. Evolutionary Computation 8(2), 183-196, April 2004.
    • (2004) IEEE Trans. Evolutionary Computation , vol.8 , Issue.2 , pp. 183-196
    • Muni, D.P.1    Pal, N.R.2    Das, J.3
  • 84
    • 0000662737 scopus 로고
    • Search-intensive concept induction
    • Neri F and Giordana A (1995) Search-intensive concept induction. Evolutionary Computation 3(4), 375-416.
    • (1995) Evolutionary Computation , vol.3 , Issue.4 , pp. 375-416
    • Neri, F.1    Giordana, A.2
  • 85
    • 33749317364 scopus 로고    scopus 로고
    • A novel method of searching the microarray data for the best gene subsets by using a genetic algorithms
    • Springer
    • Ni B and Liu J (2004) A novel method of searching the microarray data for the best gene subsets by using a genetic algorithms. Proc. Parallel Problem Solving From Nature (PPSN-2004), LNCS 3242, 1153-1162, Springer.
    • (2004) Proc. Parallel Problem Solving From Nature (PPSN-2004), LNCS , vol.3242 , pp. 1153-1162
    • Ni, B.1    Liu, J.2
  • 89
    • 67349179676 scopus 로고    scopus 로고
    • Discovering new rule induction algorithms with grammar-based genetic programming
    • Maimon O and Rokach L (Eds.) Springer
    • Pappa GL and Freitas AA (2007) Discovering new rule induction algorithms with grammar-based genetic programming. Maimon O and Rokach L (Eds.) Soft Computing for Knowledge Discovery and Data Mining. Springer.
    • (2007) Soft Computing for Knowledge Discovery and Data Mining
    • Pappa, G.L.1    Freitas, A.A.2
  • 91
    • 27144507183 scopus 로고    scopus 로고
    • Multi-objective algorithms for attribute selection in data mining
    • Coello Coello CA and Lamont GB (Ed.) World Scientific
    • Pappa GL, Freitas AA and Kaestner CAA (2004) Multi-Objective Algorithms for Attribute Selection in Data Mining. In: Coello Coello CA and Lamont GB (Ed.) Applications of Multi-objective Evolutionary Algorithms, 603-626. World Scientific.
    • (2004) Applications of Multi-objective Evolutionary Algorithms , pp. 603-626
    • Pappa, G.L.1    Freitas, A.A.2    Kaestner, C.A.A.3
  • 92
    • 0033879297 scopus 로고    scopus 로고
    • Knowledge discovery from data
    • 10-13, Mar./Apr. 2000
    • Pazzani MJ (2000) Knowledge discovery from data, IEEE Intelligent Systems, 10-13, Mar./Apr. 2000.
    • (2000) IEEE Intelligent Systems
    • Pazzani, M.J.1
  • 94
    • 2442585117 scopus 로고    scopus 로고
    • A genetic algorithm for discover-ing interesting fuzzy prediction rules: Applications to science and technology data
    • Morgan Kaufmann
    • Romao W, Freitas AA and Pacheco RCS (2002) A Genetic Algorithm for Discover-ing Interesting Fuzzy Prediction Rules: applications to science and technologydata. Proc. Genetic and Evolutionary Computation Conf. (GECCO-2002), pp. 1188-1195. Morgan Kaufmann.
    • (2002) Proc. Genetic and Evolutionary Computation Conf. (GECCO-2002 , pp. 1188-1195
    • Romao, W.1    Freitas, A.A.2    Pacheco, R.C.S.3
  • 95
    • 2442597364 scopus 로고    scopus 로고
    • Discovering interesting knowledge from a science and technology database with a genetic algorithm
    • Romao W, Freitas AA, Gimenes IMS (2004) Discovering interesting knowledge from a science and technology database with a genetic algorithm. Applied Soft Computing 4(2), pp. 121-137.
    • (2004) Applied Soft Computing , vol.4 , Issue.2 , pp. 121-137
    • Romao, W.1    Freitas, A.A.2    Gimenes, I.M.S.3
  • 96
    • 34748818341 scopus 로고    scopus 로고
    • Selecting representative examples and attributes by a genetic algorithm
    • Rozsypal A and Kubat M (2003) Selecting representative examples and attributes by a genetic algorithm. Intelligent Data Analysis 7, 290-304.
    • (2003) Intelligent Data Analysis , vol.7 , pp. 290-304
    • Rozsypal, A.1    Kubat, M.2
  • 98
    • 0033226129 scopus 로고    scopus 로고
    • Effcient ga based techniques for classification
    • Sharpe PK and Glover RP (1999) Effcient GA based techniques for classification. Applied Intelligence 11, 277-284.
    • (1999) Applied Intelligence , vol.11 , pp. 277-284
    • Sharpe, P.K.1    Glover, R.P.2
  • 99
    • 80051947286 scopus 로고    scopus 로고
    • Learning classifier systems
    • T. Back, d.b. Fogel and t. Michalewicz (eds Institute of Physics Publishing
    • Smith RE (2000) Learning classifier systems. In: T. Back, D.B. Fogel and T. Michalewicz (Eds.) Evolutionary Computation 1: Basic Algorithms and Op-erators, 114-123. Institute of Physics Publishing.
    • (2000) Evolutionary Computation 1: Basic Algorithms and Op-erators , pp. 114-123
    • Smith, R.E.1
  • 100
    • 35248885574 scopus 로고    scopus 로고
    • Feature construction and selection using genetic programming and a genetic algorithm
    • Springer
    • Smith MG and Bull L (2003) Feature construction and selection using genetic programming and a genetic algorithm. Genetic Programming: Proc. EuroGP-2003, LNCS 2610, 229-237. Springer.
    • (2003) Genetic Programming: Proc. EuroGP-2003, LNCS , vol.2610 , pp. 229-237
    • Smith, M.G.1    Bull, L.2
  • 101
    • 35048902045 scopus 로고    scopus 로고
    • Using genetic programming for feature creation with a genetic algorithm feature selector
    • Springer
    • Smith MG and Bull L (2004) Using genetic programming for feature creation with a genetic algorithm feature selector. Proc. Parallel Problem Solving From Nature (PPSN-2004), LNCS 3242, 1163-1171, Springer.
    • (2004) Proc. Parallel Problem Solving From Nature (PPSN-2004), LNCS , vol.3242 , pp. 1163-1171
    • Smith, M.G.1    Bull, L.2
  • 102
    • 21044433766 scopus 로고    scopus 로고
    • Training genetic program-ming on half a million patterns: An example from anomaly detection
    • June 2005
    • Song D, Heywood MI and Zincir-Heywood AN (2005) Training genetic program-ming on half a million patterns: an example from anomaly detection. IEEE Trans. Evolutionary Computation 9(3), 225-239, June 2005.
    • (2005) IEEE Trans. Evolutionary Computation , vol.9 , Issue.3 , pp. 225-239
    • Song, D.1    Heywood, M.I.2    Zincir-Heywood, A.N.3
  • 105
    • 0012887452 scopus 로고    scopus 로고
    • Interactive genetic algorithm based feature selection and its application to marketing data analysis
    • Liu H and Motoda H (Eds.) Kluwer
    • Terano T and Ishino Y (1998) Interactive genetic algorithm based feature selection and its application to marketing data analysis. In: Liu H and Motoda H (Eds.) Feature Extraction, Construction and Selection: a data mining perspective, 393-406. Kluwer.
    • (1998) Feature Extraction, Construction and Selection: A data mining perspective , pp. 393-406
    • Terano, T.1    Ishino, Y.2
  • 106
    • 9444245465 scopus 로고    scopus 로고
    • Data mining from clinical data using interactive evolutionary computation
    • A. Ghosh and S. Tsutsui (Eds.) Springer
    • Terano T and Inada M (2002) Data mining from clinical data using interactive evolutionary computation. In: A. Ghosh and S. Tsutsui (Eds.) Advances in Evolutionary Computing: theory and applications, 847-861. Springer.
    • (2002) Advances in Evolutionary Computing: Theory and applications , pp. 847-861
    • Terano, T.1    Inada, M.2
  • 107
    • 0142004405 scopus 로고    scopus 로고
    • Evolutionary feature space transformation
    • H. Liu and H. Motoda (Eds.) Kluwer
    • Vafaie H and De Jong K (1998) Evolutionary Feature Space Transformation. In: H. Liu and H. Motoda (Eds.) Feature Extraction, Construction and Selection, 307-323. Kluwer.
    • (1998) Feature Extraction, Construction and Selection , pp. 307-323
    • Vafaie, H.1    De Jong, K.2
  • 111
    • 0000961364 scopus 로고    scopus 로고
    • Feature subset selection using a genetic algorithm
    • Kluwer. Liu, H. and Motoda, H (Eds.
    • Yang J and Honavar V (1998) Feature subset selection using a genetic algorithm. In: Liu, H. and Motoda, H (Eds.) Feature Extraction, Construction and Selection, 117-136. Kluwer.
    • (1998) Feature Extraction, Construction and Selection , pp. 117-136
    • Yang, J.1    Honavar, V.2
  • 112
    • 84901461381 scopus 로고    scopus 로고
    • Neural vs. Statistical classifier in conjunc-tion with genetic algorithm feature selection in digital mammography
    • IEEE Press
    • Zhang P, Verma B, Kumar K (2003) Neural vs. Statistical classifier in conjunc-tion with genetic algorithm feature selection in digital mammography. Proc. Congress on Evolutionary Computation (CEC-2003). IEEE Press.
    • (2003) Proc. Congress on Evolutionary Computation (CEC-2003
    • Zhang, P.1    Verma, B.2    Kumar, K.3
  • 113
    • 0346503002 scopus 로고    scopus 로고
    • Evolving accurate and com-pact classification rules with gene expression programming
    • Zhou C, Xiao W, Tirpak TM and Nelson PC (2003) Evolving accurate and com-pact classification rules with gene expression programming. IEEE Trans. on Evolutionary Computation 7(6), 519-531.
    • (2003) IEEE Trans on Evolutionary Computation , vol.7 , Issue.6 , pp. 519-531
    • Zhou, C.1    Xiao, W.2    Tirpak, T.M.3    Nelson, P.C.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.