메뉴 건너뛰기




Volumn , Issue , 2013, Pages 243-248

Advantage analysis of sigmoid based RBF networks

Author keywords

ErrCor algorithm; neural network; RBF; sigmoid

Indexed keywords

ADVANTAGE ANALYSIS; COMPARISON RESULT; EXTRA DIMENSIONS; RBF; RBF MODEL; SIGMOID; SIGMOID FUNCTION;

EID: 84889664568     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/INES.2013.6632819     Document Type: Conference Paper
Times cited : (7)

References (18)
  • 1
    • 0000672424 scopus 로고
    • Fast learning networks of locally-tuned processing units
    • J. Moody and C. J. Darken, Fast learning networks of locally-tuned processing units, Neural Computation vol. 1, no. 2, pp. 281-294, 1989.
    • (1989) Neural Computation , vol.1 , Issue.2 , pp. 281-294
    • Moody, J.1    Darken, C.J.2
  • 2
    • 0001683814 scopus 로고
    • Layered neural networks with Gaussian hidden units as universal approximations
    • E. Hartman, J. D. Keeler, and J. M. Kowalski, Layered neural networks with Gaussian hidden units as universal approximations. Neural Computationi, vol.2, no. 2, pp.210-215, 1990.
    • (1990) Neural Computationi , vol.2 , Issue.2 , pp. 210-215
    • Hartman, E.1    Keeler, J.D.2    Kowalski, J.M.3
  • 3
    • 80052861320 scopus 로고    scopus 로고
    • Comparison between traditional neural networks and radial basis function networks
    • Gdansk, Poland, Jun 27 30
    • T. T. Xie, H. Yu and Bogdan Wilamowski, Comparison between Traditional Neural Networks and Radial Basis Function Networks, in Proc. 20th IEEE Int. Symp. Ind. Electron.-ISIE11, Gdansk, Poland, Jun. 27-30, 2011, pp. 1194-1199.
    • (2011) Proc. 20th IEEE Int. Symp. Ind. Electron.-ISIE11 , pp. 1194-1199
    • Xie, T.T.1    Yu, H.2    Wilamowski, B.3
  • 8
    • 0007917191 scopus 로고
    • Input data transformation for better pattern classification with less neurons
    • San Diego, California
    • Ota Y. and B. Wilamowski, (1994) Input data transformation for better pattern classification with less neurons, Proc. of World Congress on Neural Networks, San Diego, California, vol. 3, pp 667-672.
    • (1994) Proc. of World Congress on Neural Networks , vol.3 , pp. 667-672
    • Ota, Y.1    Wilamowski, B.2
  • 9
    • 0002773313 scopus 로고
    • Learning with localized receptive fields
    • D. Touretzky, G. Hinton, and T. Sejnowski, Eds
    • J. Moody and C. J. Darken, Learning with localized receptive fields, in Proc. Connectionist Models Summer School, D. Touretzky, G. Hinton, and T. Sejnowski, Eds., 1988, pp. 133-142.
    • (1988) Proc. Connectionist Models Summer School , pp. 133-142
    • Moody, J.1    Darken, C.J.2
  • 10
    • 0026116468 scopus 로고
    • Orthogonal least squares learning algorithm for radial basis function networks
    • Mar
    • S. Chen, C. F. N. Cowan, and P. M. Grant, Orthogonal least squares learning algorithm for radial basis function networks, IEEE Trans. Neural Netw., vol. 2, no. 2, pp. 302-309, Mar. 1991.
    • (1991) IEEE Trans. Neural Netw. , vol.2 , Issue.2 , pp. 302-309
    • Chen, S.1    Cowan, C.F.N.2    Grant, P.M.3
  • 11
    • 1342286914 scopus 로고    scopus 로고
    • Induction machine fault detection using SOM-based RBF neural networks
    • Feb
    • S. Wu and T. W. S. Chow, Induction machine fault detection using SOM-based RBF neural networks, IEEE Trans. Ind. Electron., vol. 51, no. 1, pp. 183-194, Feb. 2004.
    • (2004) IEEE Trans. Ind. Electron. , vol.51 , Issue.1 , pp. 183-194
    • Wu, S.1    Chow, T.W.S.2
  • 12
    • 33751560009 scopus 로고
    • Regularization in the selection of radial basis function centers
    • May
    • M. J. L. Orr, Regularization in the selection of radial basis function centers, Neural Comput., vol. 7, no. 3, pp. 606-623, May 1995.
    • (1995) Neural Comput. , vol.7 , Issue.3 , pp. 606-623
    • Orr, M.J.L.1
  • 13
    • 80053202403 scopus 로고    scopus 로고
    • Advantages of radial basis function networks for dynamic system design
    • Dec
    • H. Yu, T. T. Xie, S. Paszczynski, and B. M. Wilamowski, Advantages of radial basis function networks for dynamic system design, IEEE Trans. Ind. Electron., vol. 58, no. 12, pp. 5438-5450, Dec. 2011.
    • (2011) IEEE Trans. Ind. Electron. , vol.58 , Issue.12 , pp. 5438-5450
    • Yu, H.1    Xie, T.T.2    Paszczynski, S.3    Wilamowski, B.M.4
  • 14
    • 0000873069 scopus 로고
    • A method for the solution of certain problems in least squares
    • K. Levenberg, A method for the solution of certain problems in least squares, Quart. Appl. March., vol. 2, pp. 164-168, 1944.
    • (1944) Quart. Appl. March. , vol.2 , pp. 164-168
    • Levenberg, K.1
  • 16
    • 0032864174 scopus 로고    scopus 로고
    • Solving the N-bit parity problem using neural networks
    • M. E. Hohil, D. Liu, and S. H. Smith, Solving the N-bit parity problem using neural networks, Neural Networks, 12, 1321-1323, 1999.
    • (1999) Neural Networks , vol.12 , pp. 1321-1323
    • Hohil, M.E.1    Liu, D.2    Smith, S.H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.