메뉴 건너뛰기




Volumn 79, Issue 12, 2013, Pages 1121-1130

Assessing post-fire regeneration in a Mediterranean mixed forest using lidar data and Artificial Neural Networks

Author keywords

[No Author keywords available]

Indexed keywords

CANOPY HEIGHT MODELS; CLASSIFICATION MODELS; MANAGEMENT PRACTICES; POST-FIRE REGENERATIONS; PREDICTION MODEL; SITE RESTORATION; VEGETATION CONDITION; VEGETATION FRACTION COVER;

EID: 84889661822     PISSN: 00991112     EISSN: None     Source Type: Journal    
DOI: 10.14358/PERS.79.12.1121     Document Type: Article
Times cited : (13)

References (60)
  • 1
    • 33748413603 scopus 로고    scopus 로고
    • Fire regime and post-fire Normalized DifferenceVegetation Index changes in the eastern Iberian Peninsula (Mediterranean basin)
    • Abdel Malak, D., and J.G. Pausas, 2006. Fire regime and post-fire Normalized DifferenceVegetation Index changes in the eastern Iberian Peninsula (Mediterranean basin), International Journal of Wildland Fire, 15:407-413.
    • (2006) International Journal of Wildland Fire , vol.15 , pp. 407-413
    • Abdel Malak, D.1    Pausas, J.G.2
  • 2
    • 37549028503 scopus 로고    scopus 로고
    • A neural net model for environmental flow estimation at the Ebro River Basin, Spain
    • Alcázar, J., A. Palau, and C. Vega-García, 2008. A neural net model for environmental flow estimation at the Ebro River Basin, Spain, Journal of Hydrology, 349:44-55.
    • (2008) Journal of Hydrology , vol.349 , pp. 44-55
    • Alcázar, J.1    Palau, A.2    Vega-García, C.3
  • 4
    • 0033400675 scopus 로고    scopus 로고
    • Comparative accuracies of artificial neural networks and discriminant analysis in predicting forest cover types from cartographic variables
    • Blackard, J.A., and D.J. Dean, 1999. Comparative accuracies of artificial neural networks and discriminant analysis in predicting forest cover types from cartographic variables, Computers and Electronics in Agriculture, 24:131-151.
    • (1999) Computers and Electronics In Agriculture , vol.24 , pp. 131-151
    • Blackard, J.A.1    Dean, D.J.2
  • 5
    • 0000583248 scopus 로고
    • Probabilistic interpretation of feedforward classification network outputs, with relationships to statistical pattern recognition
    • F. Fougelman-Soulie and J. Herault, editors, Springer-Verlag, Inc., Berlin
    • Bridle, J.S., 1989. Probabilistic interpretation of feedforward classification network outputs, with relationships to statistical pattern recognition, Neuro-computing: Algorithms, Architectures and Applications (F. Fougelman-Soulie and J. Herault, editors), Springer-Verlag, Inc., Berlin, pp. 227-236.
    • (1989) Neuro-computing: Algorithms, Architectures and Applications , pp. 227-236
    • Bridle, J.S.1
  • 6
    • 4243192415 scopus 로고    scopus 로고
    • Topography and forest composition affecting the variability in fire severity and post-fire regeneration occurring after a large fire in the Mediterranean basin
    • Broncano, M.J., and J. Retana, 2004. Topography and forest composition affecting the variability in fire severity and post-fire regeneration occurring after a large fire in the Mediterranean basin, International Journal of Wildland Fire, 13:209-216.
    • (2004) International Journal of Wildland Fire , vol.13 , pp. 209-216
    • Broncano, M.J.1    Retana, J.2
  • 7
    • 26844463567 scopus 로고    scopus 로고
    • Predicting the recovery of Pinus halepensis and Quercus ilex forests after a large wildfire in northeastern Spain
    • Broncano, M.J., J. Retana, and A. Rodrigo, 2005. Predicting the recovery of Pinus halepensis and Quercus ilex forests after a large wildfire in northeastern Spain, Plant Ecology, 180:47-56.
    • (2005) Plant Ecology , vol.180 , pp. 47-56
    • Broncano, M.J.1    Retana, J.2    Rodrigo, A.3
  • 8
    • 0008850793 scopus 로고    scopus 로고
    • Inventari Ecològic i Forestal de Catalunya
    • CREAF, Bellaterra. ISBN: 84-931313-3-0
    • Burriel, J.A., C. Gracia, J.J. Ibàñez, T. Mata, and J. Vayreda, 2000. Inventari Ecològic i Forestal de Catalunya, Regió Forestal IV, CREAF, Bellaterra. ISBN: 84-931313-3-0.
    • (2000) Regió Forestal , vol.4
    • Burriel, J.A.1    Gracia, C.2    Ibàñez, J.J.3    Mata, T.4    Vayreda, J.5
  • 9
    • 9644254205 scopus 로고    scopus 로고
    • Artificial neural networks for risk decision support in natural hazards: A case study of assessing the probability of house survival from bushfires
    • Chen, K., C. Jacobson, and R. Blong, 2004. Artificial neural networks for risk decision support in natural hazards: A case study of assessing the probability of house survival from bushfires, Environmental Modelling and Assessment, 9:189-199.
    • (2004) Environmental Modelling and Assessment , vol.9 , pp. 189-199
    • Chen, K.1    Jacobson, C.2    Blong, R.3
  • 10
    • 2642576811 scopus 로고    scopus 로고
    • Predicting forest attributes in Southeast Alaska using artificial neural networks
    • Corne, S.A., S.J. Carver, W.E. Kunin, J.J Lennon, and W.W.S. van Hees, 2004. Predicting forest attributes in Southeast Alaska using artificial neural networks, Forest Science, 50(2):259-276.
    • (2004) Forest Science , vol.50 , Issue.2 , pp. 259-276
    • Corne, S.A.1    Carver, S.J.2    Kunin, W.E.3    Lennon, J.J.4    van Hees, W.W.S.5
  • 11
    • 22544487549 scopus 로고    scopus 로고
    • Artificial neural networks as an alternative tool in pine bark volume estimation
    • Diamantopoulou, M., 2005. Artificial neural networks as an alternative tool in pine bark volume estimation, Computers and Electronics in Agriculture, 48:235-244.
    • (2005) Computers and Electronics In Agriculture , vol.48 , pp. 235-244
    • Diamantopoulou, M.1
  • 12
    • 84889679923 scopus 로고    scopus 로고
    • European GNSS Supervisory Authority (GSA), last date accessed: 27 August 2013
    • European GNSS Supervisory Authority (GSA), 2010. What is EGNOS?, URL: http://www.esa.int/Our_Activities/Navigation/The_present_-_EGNOS/What_is_EGNOS (last date accessed: 27 August 2013).
    • (2010) What is EGNOS?
  • 13
    • 75149145494 scopus 로고    scopus 로고
    • Fusion of LiDAR and imagery for estimating forest canopy fuels
    • Erdody, T.L., and L.M. Moskal, 2010. Fusion of LiDAR and imagery for estimating forest canopy fuels, Remote Sensing of Environment, 114:725-737.
    • (2010) Remote Sensing of Environment , vol.114 , pp. 725-737
    • Erdody, T.L.1    Moskal, L.M.2
  • 14
    • 0000155950 scopus 로고
    • The Cascade-Correlation Learning Architecture
    • (D.S. Touretzky, Editor), Morgan-Kaufmann, Inc., Los Altos California
    • Fahlman, S.E., and C. Lebiere, 1990. The Cascade-Correlation Learning Architecture, Advances in Neural Information Processing Systems, Volume 2 (D.S. Touretzky, Editor), Morgan-Kaufmann, Inc., Los Altos California, pp. 1-13.
    • (1990) Advances In Neural Information Processing Systems , vol.2 , pp. 1-13
    • Fahlman, S.E.1    Lebiere, C.2
  • 16
    • 79953227659 scopus 로고    scopus 로고
    • Multispectral and LiDAR data fusion for fuel type zapping using Support Vector Machine and decision rules
    • García, M., D. Riaño, E. Chuvieco, J. Salas, and F.M. Danson, 2011. Multispectral and LiDAR data fusion for fuel type zapping using Support Vector Machine and decision rules, Remote Sensing of Environment, 115:1369-1379.
    • (2011) Remote Sensing of Environment , vol.115 , pp. 1369-1379
    • García, M.1    Riaño, D.2    Chuvieco, E.3    Salas, J.4    Danson, F.M.5
  • 17
    • 0006623703 scopus 로고
    • Modeling red pine tree survival with an Artificial neural network
    • Guan, B.T., and G. Gertner, 1991. Modeling red pine tree survival with an Artificial neural network, Forest Science, 37(5):1429-1440.
    • (1991) Forest Science , vol.37 , Issue.5 , pp. 1429-1440
    • Guan, B.T.1    Gertner, G.2
  • 18
    • 3042725464 scopus 로고    scopus 로고
    • A neural network approach to identify forest stands susceptible to wind damage
    • Hanewinkel, M., W. Zhou, and C. Schill, 2004. A neural network approach to identify forest stands susceptible to wind damage, Forest Ecology and Management, 196:227-243.
    • (2004) Forest Ecology and Management , vol.196 , pp. 227-243
    • Hanewinkel, M.1    Zhou, W.2    Schill, C.3
  • 21
    • 0035669680 scopus 로고    scopus 로고
    • The utility of artificial neural networks for modelling the distribution of vegetation in past, present and future climates
    • Hilbert, D.W., and B. Ostendorf, 2001. The utility of artificial neural networks for modelling the distribution of vegetation in past, present and future climates, Ecological Modelling, 146:311-327.
    • (2001) Ecological Modelling , vol.146 , pp. 311-327
    • Hilbert, D.W.1    Ostendorf, B.2
  • 22
    • 26844454816 scopus 로고    scopus 로고
    • Mapping woodland species composition and structure using airborne spectral and LiDAR data
    • Hill, R.A., and A.G. Thomson, 2005. Mapping woodland species composition and structure using airborne spectral and LiDAR data, International Journal of Remote Sensing, 26(17):3763-3779.
    • (2005) International Journal of Remote Sensing , vol.26 , Issue.17 , pp. 3763-3779
    • Hill, R.A.1    Thomson, A.G.2
  • 23
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal Approximators
    • Hornik, K., M. Stinchcombe, and H. White, 1989. Multilayer feedforward networks are universal Approximators, Neural Net, 2:359-366.
    • (1989) Neural Net , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 24
    • 41249100721 scopus 로고    scopus 로고
    • Nearest neighbour imputation of species-level, plot-scale forest structure attributes from LiDAR data
    • Hudak, A.T., N.L. Crookston, J.S. Evans, D.E. Hall, and M.J. Falkowski, 2008. Nearest neighbour imputation of species-level, plot-scale forest structure attributes from LiDAR data, Remote Sensing of Environment, 112:2232-2245.
    • (2008) Remote Sensing of Environment , vol.112 , pp. 2232-2245
    • Hudak, A.T.1    Crookston, N.L.2    Evans, J.S.3    Hall, D.E.4    Falkowski, M.J.5
  • 26
    • 67349189445 scopus 로고    scopus 로고
    • Prediction of street tree morphological parameters using Artificial neural networks
    • Jutras, P., S.O. Prasher, and G.R. Mehuys, 2009. Prediction of street tree morphological parameters using Artificial neural networks, Computers and Electronics in Agriculture, 67:9-17.
    • (2009) Computers and Electronics In Agriculture , vol.67 , pp. 9-17
    • Jutras, P.1    Prasher, S.O.2    Mehuys, G.R.3
  • 27
    • 0002617290 scopus 로고
    • Applying neural networks - Part III: Training a neural network
    • Klimasauskas, C.C., 1991. Applying neural networks - Part III: Training a neural network, PCAI, 5(3):20-24.
    • (1991) PCAI , vol.5 , Issue.3 , pp. 20-24
    • Klimasauskas, C.C.1
  • 28
    • 45849107278 scopus 로고    scopus 로고
    • Multi-source land cover classification for forest fire management based on imaging spectrometry and LiDAR data
    • Koetz, B., F. Morsdorf, S. van der Linden, T. Curt, and B. Allgöwer, 2008. Multi-source land cover classification for forest fire management based on imaging spectrometry and LiDAR data, Forest Ecology and Management, 256:263-271.
    • (2008) Forest Ecology and Management , vol.256 , pp. 263-271
    • Koetz, B.1    Morsdorf, F.2    van der Linden, S.3    Curt, T.4    Allgöwer, B.5
  • 29
    • 0004139833 scopus 로고
    • MIT Press, Cambridge, Massachusetts
    • Koza, J.R., 1993. Genetic Programming, MIT Press, Cambridge, Massachusetts.
    • (1993) Genetic Programming
    • Koza, J.R.1
  • 30
    • 33748789587 scopus 로고    scopus 로고
    • Classifying regenerating forest stages in Amazônia using remotely sensed images and a neural network
    • Kuplich, T.M., 2006. Classifying regenerating forest stages in Amazônia using remotely sensed images and a neural network, Forest Ecology and Management, 234:1-9.
    • (2006) Forest Ecology and Management , vol.234 , pp. 1-9
    • Kuplich, T.M.1
  • 33
    • 0344604541 scopus 로고    scopus 로고
    • Artificial neural networks as a tool in ecological modeling, An introduction
    • Lek, S., and J.F. Guégan, 1999. Artificial neural networks as a tool in ecological modeling, An introduction, Ecological Modelling, 120:65-73.
    • (1999) Ecological Modelling , vol.120 , pp. 65-73
    • Lek, S.1    Guégan, J.F.2
  • 35
    • 0344631729 scopus 로고    scopus 로고
    • Effect of burnt wood removal on the natural regeneration of Pinus halepensis after fire in a pine forest in Tus valley (SE Spain)
    • Martínez-Sánchez, J.J., P. Ferrandis, J. De las Heras, and J.M. Herranz, 1999. Effect of burnt wood removal on the natural regeneration of Pinus halepensis after fire in a pine forest in Tus valley (SE Spain), Forest Ecology and Management, 123:1-10.
    • (1999) Forest Ecology and Management , vol.123 , pp. 1-10
    • Martínez-Sánchez, J.J.1    Ferrandis, P.2    De las Heras, J.3    Herranz, J.M.4
  • 38
    • 36348933235 scopus 로고    scopus 로고
    • Mapping surface fuel models using lidar and multispectral data fusion for fire behaviour
    • Mutlu, M., S.C Popescu, C. Stripling, and T. Spencer, 2008. Mapping surface fuel models using lidar and multispectral data fusion for fire behaviour, Remote Sensing of Environment, 112:274-285.
    • (2008) Remote Sensing of Environment , vol.112 , pp. 274-285
    • Mutlu, M.1    Popescu, S.C.2    Stripling, C.3    Spencer, T.4
  • 39
    • 2342590151 scopus 로고    scopus 로고
    • Practical large-scale forest stand inventory using a small-footprint airborne scanning laser
    • Næsset, E., 2004. Practical large-scale forest stand inventory using a small-footprint airborne scanning laser, Scandinavian Journal of Forest Research, 19:164-179.
    • (2004) Scandinavian Journal of Forest Research , vol.19 , pp. 164-179
    • Næsset, E.1
  • 40
    • 84889640653 scopus 로고    scopus 로고
    • NeuralWorks Predict, The Complete Solution for Neural Data Modelling, User Guide
    • NEURALWARE, NeuralWare Inc., Carnergie, Pennsylvania
    • NEURALWARE, 2009. NeuralWorks Predict, The Complete Solution for Neural Data Modelling, User Guide, Version 3.24, NeuralWare Inc., Carnergie, Pennsylvania, 402 p.
    • (2009) Version 3 , vol.24 , pp. 402
  • 41
    • 84889688552 scopus 로고    scopus 로고
    • Regeneration of Pinus and Quercus after fire in Mediterranean-type ecosystems: Natural mechanisms and management practices
    • Oliveira, S., and P. Fernandes, 2009. Regeneration of Pinus and Quercus after fire in Mediterranean-type ecosystems: Natural mechanisms and management practices, Silva Lusitana, 17(2):181-192.
    • (2009) Silva Lusitana , vol.17 , Issue.2 , pp. 181-192
    • Oliveira, S.1    Fernandes, P.2
  • 43
    • 8844258178 scopus 로고    scopus 로고
    • Post-fire regeneration variability of Pinus halepensis in the eastern Iberian Peninsula
    • Pausas, J.G., E. Ribeiro, and R. Vallejo, 2004. Post-fire regeneration variability of Pinus halepensis in the eastern Iberian Peninsula, Forest Ecology and Management, 203:251-259.
    • (2004) Forest Ecology and Management , vol.203 , pp. 251-259
    • Pausas, J.G.1    Ribeiro, E.2    Vallejo, R.3
  • 44
    • 77953496865 scopus 로고    scopus 로고
    • Regeneration status of tree species in forest of Phakot and Pathri Rao watersheds in Garhwal Himalaya
    • Pokhriyal, P., P. Uniyal, D.S. Chauhan, and N.P. Todaria, 2010. Regeneration status of tree species in forest of Phakot and Pathri Rao watersheds in Garhwal Himalaya, Current Science, 98(2):171-175.
    • (2010) Current Science , vol.98 , Issue.2 , pp. 171-175
    • Pokhriyal, P.1    Uniyal, P.2    Chauhan, D.S.3    Todaria, N.P.4
  • 45
    • 4143127743 scopus 로고    scopus 로고
    • Seeing the trees in the forest: Using lidar and multispectral data fusion with local fi ltering and variable window size for estimating tree height
    • Popescu, S.C., and R.H. Wynne, 2004. Seeing the trees in the forest: using lidar and multispectral data fusion with local fi ltering and variable window size for estimating tree height, Photogrammetric Engineering & Remote Sensing, 70(5):589-604.
    • (2004) Photogrammetric Engineering & Remote Sensing , vol.70 , Issue.5 , pp. 589-604
    • Popescu, S.C.1    Wynne, R.H.2
  • 46
    • 39749118753 scopus 로고    scopus 로고
    • A voxel-based lidar method for estimating crown base height for deciduous and pine trees
    • Popescu, S.C., and K. Zhao, 2008. A voxel-based lidar method for estimating crown base height for deciduous and pine trees, Remote Sensing of Environment, 112:767-781.
    • (2008) Remote Sensing of Environment , vol.112 , pp. 767-781
    • Popescu, S.C.1    Zhao, K.2
  • 48
    • 0000696616 scopus 로고
    • Neural networks and related methods for classification
    • Ripley, B.D., 1994. Neural networks and related methods for classification, Journal of the Royal Statistical Society, 56 (3):409-456.
    • (1994) Journal of the Royal Statistical Society , vol.56 , Issue.3 , pp. 409-456
    • Ripley, B.D.1
  • 50
    • 77949487082 scopus 로고    scopus 로고
    • Modelling tree diameter from airborne laser scanning derived variables: A comparison of spatial statistical models
    • Salas, C, L. Ene, T.G. Gregoire, E. Næsset, and T. Gobakken, 2010. Modelling tree diameter from airborne laser scanning derived variables: A comparison of spatial statistical models, Remote Sensing of Environment, 114:1277-1285.
    • (2010) Remote Sensing of Environment , vol.114 , pp. 1277-1285
    • Salas, C.1    Ene, L.2    Gregoire, T.G.3    Næsset, E.4    Gobakken, T.5
  • 51
    • 34447574678 scopus 로고    scopus 로고
    • Development of a neural network model to update forest distribution data for managed alpine stands
    • Scrinzi, G., L. Marzullo, and D. Galvagni, 2007. Development of a neural network model to update forest distribution data for managed alpine stands, Ecological Modelling, 206:331-346.
    • (2007) Ecological Modelling , vol.206 , pp. 331-346
    • Scrinzi, G.1    Marzullo, L.2    Galvagni, D.3
  • 52
    • 70449727213 scopus 로고    scopus 로고
    • Post-fire vegetation regrowth detection in the Deiva Marina region (Liguria-Italy) using Landsat TM and ETM+ data
    • Solans-Vila, J.P., and P. Barbosa, 2010. Post-fire vegetation regrowth detection in the Deiva Marina region (Liguria-Italy) using Landsat TM and ETM+ data, Ecological Modelling, 221:75-84.
    • (2010) Ecological Modelling , vol.221 , pp. 75-84
    • Solans-Vila, J.P.1    Barbosa, P.2
  • 53
    • 33748111468 scopus 로고    scopus 로고
    • LiDAR measurement of sagebrush steppe vegetation heights
    • Streutker, D.R., and N.F. Glenn, 2006. LiDAR measurement of sagebrush steppe vegetation heights, Remote Sensing of Environment, 102:135-145.
    • (2006) Remote Sensing of Environment , vol.102 , pp. 135-145
    • Streutker, D.R.1    Glenn, N.F.2
  • 54
    • 67649407467 scopus 로고    scopus 로고
    • Identifying wildland fire ignition factors through sensitivity analysis of a neural network
    • Vasilakos, C., K. Kalabokidis, J. Hatzopoulos, and I. Matsinos, 2009. Identifying wildland fire ignition factors through sensitivity analysis of a neural network, Natural Hazards, 50:125-143.
    • (2009) Natural Hazards , vol.50 , pp. 125-143
    • Vasilakos, C.1    Kalabokidis, K.2    Hatzopoulos, J.3    Matsinos, I.4
  • 55
    • 0030326854 scopus 로고    scopus 로고
    • Applying neural network technology to human-caused wildfire occurrence prediction
    • Vega-Garcia, C., B.S. Lee, P.M. Woodard, and S.J. Titus, 1996. Applying neural network technology to human-caused wildfire occurrence prediction, AI Applications, 10(3):9-18.
    • (1996) AI Applications , vol.10 , Issue.3 , pp. 9-18
    • Vega-Garcia, C.1    Lee, B.S.2    Woodard, P.M.3    Titus, S.J.4
  • 56
    • 71049174920 scopus 로고    scopus 로고
    • Estimation of fire-severity using pre- and post-fire LiDAR data in sagebrush steppe rangelands
    • Wang, C., and N.F. Glenn, 2009. Estimation of fire-severity using pre- and post-fire LiDAR data in sagebrush steppe rangelands, International Journal of Wildland Fire, 18:848-856.
    • (2009) International Journal of Wildland Fire , vol.18 , pp. 848-856
    • Wang, C.1    Glenn, N.F.2
  • 58
  • 60
    • 0034074508 scopus 로고    scopus 로고
    • Modeling tree-ring growth responses to climatic variables using Artificial neural networks
    • Zhang, Q.B., R.J. Hebda, Q.J. Zhang, and R.I. Alfaro, 2000. Modeling tree-ring growth responses to climatic variables using Artificial neural networks, Forest Science, 46(2):229-239.
    • (2000) Forest Science , vol.46 , Issue.2 , pp. 229-239
    • Zhang, Q.B.1    Hebda, R.J.2    Zhang, Q.J.3    Alfaro, R.I.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.