메뉴 건너뛰기




Volumn 22, Issue 3, 2013, Pages 484-496

Forest attributes estimation using aerial laser scanner and TM data

Author keywords

ALS; Forest attributes estimation; Non parametric algorithms; TM

Indexed keywords


EID: 84889632357     PISSN: 21715068     EISSN: None     Source Type: Journal    
DOI: 10.5424/fs/2013223-03874     Document Type: Article
Times cited : (21)

References (56)
  • 2
    • 33746518499 scopus 로고    scopus 로고
    • Estimating forest structure parameters within Fort Lewis Military Reservation using airborne laser scanner (LIDAR) data
    • Washington, University of Washington, College of Forest Resources
    • Andersen HE, Foster JR, Reutebuch SE, 2003. Estimating forest structure parameters within Fort Lewis Military Reservation using airborne laser scanner (LIDAR) data. In: Proceedings, 2nd Inter-national Precision Forestry Symposium. Seattle, Washington, University of Washington, College of Forest Resources. pp: 45-53.
    • Proceedings, 2nd Inter-national Precision Forestry Symposium. Seattle , pp. 45-53
    • Andersen, H.E.1    Foster, J.R.2    Reutebuch, S.E.3
  • 3
    • 4544266860 scopus 로고    scopus 로고
    • Object-based retrieval of biophysical canopy variables using artificial neural nets and radiative transfer models
    • Atzberger C, 2004. Object-based retrieval of biophysical canopy variables using artificial neural nets and radiative transfer models. Remote Sensing of Environment 93: 53-67.
    • (2004) Remote Sensing of Environment , vol.93 , pp. 53-67
    • Atzberger, C.1
  • 4
    • 77956177220 scopus 로고    scopus 로고
    • Comparison of nearest neighbor approaches for small area estimation of tree species-specific forest inventory attributes in central Europe using airborne laser scanner data
    • Breidenbach J, Nothdurft A, Kandler G, 2010. Comparison of nearest neighbor approaches for small area estimation of tree species-specific forest inventory attributes in central Europe using airborne laser scanner data. European Journal of Forest Resources.
    • (2010) European Journal of Forest Resources
    • Breidenbach, J.1    Nothdurft, A.2    Kandler, G.3
  • 7
    • 79960462309 scopus 로고    scopus 로고
    • A support vector regression approach to estimate forest biophysical parameters at the object level using airborne LiDAR transects and Quick Bird data
    • Chen G, Hay GJ, 2011. A support vector regression approach to estimate forest biophysical parameters at the object level using airborne LiDAR transects and Quick Bird data. Photogrammetric Engineering & Remote Sensing 77(7): 733-741.
    • (2011) Photogrammetric Engineering & Remote Sensing , vol.77 , Issue.7 , pp. 733-741
    • Chen, G.1    Hay, G.J.2
  • 10
    • 33846939265 scopus 로고    scopus 로고
    • Support vector machines regression for retrieval of leaf area index from multi angle imaging spectroradiometer
    • Durbha SS, King RL, Younan NH, 2007. Support vector machines regression for retrieval of leaf area index from multi angle imaging spectroradiometer. Remote Sensing of Environment 107: 348-361.
    • (2007) Remote Sensing of Environment , vol.107 , pp. 348-361
    • Durbha, S.S.1    King, R.L.2    Younan, N.H.3
  • 11
    • 68349105164 scopus 로고    scopus 로고
    • Estimating current forest attributes from panelled inventory data using plot-level imputation: A study from the Pacific Northwest
    • Eskelson BNI, Hailemariam T, Barrett TM, 2009. Estimating current forest attributes from panelled inventory data using plot-level imputation: a study from the Pacific Northwest. Forest Science 55: 64-71.
    • (2009) Forest Science , vol.55 , pp. 64-71
    • Eskelson, B.N.I.1    Hailemariam, T.2    Barrett, T.M.3
  • 12
    • 33646201992 scopus 로고    scopus 로고
    • Applying an efficient k-nearest neighbour search to forest attribute imputation
    • Finley AO, McRoberts RE, Ek AR, 2006. Applying an efficient k-nearest neighbour search to forest attribute imputation. Forest Science 52: 130-135.
    • (2006) Forest Science , vol.52 , pp. 130-135
    • Finley, A.O.1    McRoberts, R.E.2    Ek, A.R.3
  • 13
    • 0034814349 scopus 로고    scopus 로고
    • Estimation and mapping of forest stand density, volume, and cover type using the k-nearest neighbors' method
    • Franco-López H, Ek AR, Bauer ME, 2001. Estimation and mapping of forest stand density, volume, and cover type using the k-nearest neighbors' method. Remote Sensing of Environment 77(3): 251-274.
    • (2001) Remote Sensing of Environment , vol.77 , Issue.3 , pp. 251-274
    • Franco-López, H.1    Ek, A.R.2    Bauer, M.E.3
  • 14
    • 0031106095 scopus 로고    scopus 로고
    • Biomass retrieval from high-dimensional active/passive remote sensing data by using artificial neural networks
    • Jin Y, Liu C, 1997. Biomass retrieval from high-dimensional active/passive remote sensing data by using artificial neural networks. International Journal of Remote Sensing 18(4): 971-979.
    • (1997) International Journal of Remote Sensing , vol.18 , Issue.4 , pp. 971-979
    • Jin, Y.1    Liu, C.2
  • 16
    • 11144310034 scopus 로고    scopus 로고
    • Prediction of tree height, basal area, and stem volume using airborne laser scanning
    • Holmgren J, 2004. Prediction of tree height, basal area, and stem volume using airborne laser scanning, Scandinavian Journal Forest Resources 19: 543-553.
    • (2004) Scandinavian Journal Forest Resources , vol.19 , pp. 543-553
    • Holmgren, J.1
  • 19
    • 48349122490 scopus 로고    scopus 로고
    • Estimation of stand volumes using the k -nearest neighbor method in Kyushu, Japan
    • Kajisa T, Murakami T, Mizoue N, Kitahara F, Yoshida S, 2008. Estimation of stand volumes using the k -nearest neighbor method in Kyushu, Japan. Journal of Forest Research 13(4): 249-254.
    • (2008) Journal of Forest Research , vol.13 , Issue.4 , pp. 249-254
    • Kajisa, T.1    Murakami, T.2    Mizoue, N.3    Kitahara, F.4    Yoshida, S.5
  • 20
    • 77957768057 scopus 로고    scopus 로고
    • Non-parametric prediction and mapping of standing timber volume and biomass in a temperate forest: Optimization of variable selection on optical/LiDAR-derived predictors
    • Latifi H, Nothdurfet A, Koch B, 2010. Non-parametric prediction and mapping of standing timber volume and biomass in a temperate forest: optimization of variable selection on optical/LiDAR-derived predictors. Forestry Journal 83: 395-407.
    • (2010) Forestry Journal , vol.83 , pp. 395-407
    • Latifi, H.1    Nothdurfet, A.2    Koch, B.3
  • 25
    • 3042802309 scopus 로고    scopus 로고
    • Estimation of forest stands volumes by Landsat TM imagery and stand-level field-inventory data
    • Makela H, Pekkarinen A, 2004. Estimation of forest stands volumes by Landsat TM imagery and stand-level field-inventory data. Forest Ecology and Management 196: 245-255.
    • (2004) Forest Ecology and Management , vol.196 , pp. 245-255
    • Makela, H.1    Pekkarinen, A.2
  • 26
    • 33646266723 scopus 로고    scopus 로고
    • Estimation of stem volume using laser scanning based canopy height metrics
    • Maltamo M, Eerikainen K, Packalen P, Hyyppa J, 2006a. Estimation of stem volume using laser scanning based canopy height metrics. Forestry 79: 217-229.
    • (2006) Forestry , vol.79 , pp. 217-229
    • Maltamo, M.1    Eerikainen, K.2    Packalen, P.3    Hyyppa, J.4
  • 27
    • 33646849465 scopus 로고    scopus 로고
    • Non-parametric estimation of stem volume using laser scanning, aerial photography, and stand register data
    • Maltamo M, Malinen J, Packalen P, Suvanto A, Kangas J, 2006b. Non-parametric estimation of stem volume using laser scanning, aerial photography, and stand register data. Canadian Journal of Forest Resources 36: 426-436.
    • (2006) Canadian Journal of Forest Resources , vol.36 , pp. 426-436
    • Maltamo, M.1    Malinen, J.2    Packalen, P.3    Suvanto, A.4    Kangas, J.5
  • 28
    • 0002941010 scopus 로고    scopus 로고
    • Support vector machines for dynamic reconstruction of a chaotic system
    • Schölkopf B, Burges CJC, Smola AJ, eds). Cambridge, MA, MIT Press
    • Mattera D, Haykin S, 1999. Support vector machines for dynamic reconstruction of a chaotic system. In: Advances in Kernel methods: support vector learning (Schölkopf B, Burges CJC, Smola AJ, eds). Cambridge, MA, MIT Press. pp: 211-242.
    • (1999) Advances In Kernel Methods: Support Vector Learning , pp. 211-242
    • Mattera, D.1    Haykin, S.2
  • 30
    • 70449347128 scopus 로고    scopus 로고
    • A comparative analysis of k-NN and decision tree methods for the Irish National Forest Inventory
    • McInerney D, Nieuwenhuis M, 2009. A comparative analysis of k-NN and decision tree methods for the Irish National Forest Inventory, International Journal of Remote Sensing 30: 4937-4955.
    • (2009) International Journal of Remote Sensing , vol.30 , pp. 4937-4955
    • McInerney, D.1    Nieuwenhuis, M.2
  • 31
    • 77951231621 scopus 로고    scopus 로고
    • Forest canopy height retrieval using lidar data, medium resolution satellite imagery and Knn estimation in Aberfoyle, Scotland
    • McInerney DO, Suárez-Mínguez J, Valbuena R, Nieuwenhuis M, 2010. Forest canopy height retrieval using lidar data, medium resolution satellite imagery and Knn estimation in Aberfoyle, Scotland. Forestry 83(2): 195-206.
    • (2010) Forestry , vol.83 , Issue.2 , pp. 195-206
    • McInerney, D.O.1    Suárez-Mínguez, J.2    Valbuena, R.3    Nieuwenhuis, M.4
  • 32
    • 35548938953 scopus 로고    scopus 로고
    • Estimating aerial means and variances of forest attributes using the k-Nearest Neighbors technique and satellite imagery
    • McRoberts R, Tomppo E, Finley A, Heikkinen J, 2007. Estimating aerial means and variances of forest attributes using the k-Nearest Neighbors technique and satellite imagery. Remote Sensing of Environment 111: 466-480.
    • (2007) Remote Sensing of Environment , vol.111 , pp. 466-480
    • McRoberts, R.1    Tomppo, E.2    Finley, A.3    Heikkinen, J.4
  • 33
    • 58249142084 scopus 로고    scopus 로고
    • Diagnostic tools for nearest neighbours techniques when used with satellite imagery
    • McRoberts R, 2009. Diagnostic tools for nearest neighbours techniques when used with satellite imagery. Remote Sensing of Environment 113: 489-499.
    • (2009) Remote Sensing of Environment , vol.113 , pp. 489-499
    • McRoberts, R.1
  • 35
    • 0030616088 scopus 로고    scopus 로고
    • Determination of mean tree height of forest stands using airborne laser scanner data
    • Naesset E, 1997. Determination of mean tree height of forest stands using airborne laser scanner data. ISPRS Journal of Photogrammetry and Remote Sensing 52: 49-56.
    • (1997) ISPRS Journal of Photogrammetry and Remote Sensing , vol.52 , pp. 49-56
    • Naesset, E.1
  • 36
    • 0036218720 scopus 로고    scopus 로고
    • Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data
    • Naesset E, 2002. Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data. Remote Sensing of Environment 80: 88-99.
    • (2002) Remote Sensing of Environment , vol.80 , pp. 88-99
    • Naesset, E.1
  • 37
    • 2342590151 scopus 로고    scopus 로고
    • Practical large-scale forest stand inventory using a small airborne scanning laser
    • Naesset E, 2004. Practical large-scale forest stand inventory using a small airborne scanning laser. Scandinavian Journal Forest Resources 19: 164-179.
    • (2004) Scandinavian Journal Forest Resources , vol.19 , pp. 164-179
    • Naesset, E.1
  • 38
    • 0031156268 scopus 로고    scopus 로고
    • Separating the ground and airborne laser sampling phases to estimate tropical forest basal area, volume, and biomass
    • Nelson R, Oderwald R, Gregoire TG, 1997. Separating the ground and airborne laser sampling phases to estimate tropical forest basal area, volume, and biomass. Remote Sensing of Environment 60: 311-326.
    • (1997) Remote Sensing of Environment , vol.60 , pp. 311-326
    • Nelson, R.1    Oderwald, R.2    Gregoire, T.G.3
  • 39
    • 0029666686 scopus 로고    scopus 로고
    • Estimation of tree heights and stand volume using an airborne LiDAR system
    • Nilsson M, 1996. Estimation of tree heights and stand volume using an airborne LiDAR system. Remote Sensing of Environment 56: 1-7.
    • (1996) Remote Sensing of Environment , vol.56 , pp. 1-7
    • Nilsson, M.1
  • 40
    • 0003596663 scopus 로고    scopus 로고
    • PhD thesis. Swedish University of Agricultural Sciences. Department of Forest Resource Management and Geomatics, Acta Universitatis Agriculturae Sueciae. Silvestria 17
    • Nilsson M, 1997. Estimation of forest variables using satellite image data and airborne Lidar. PhD thesis. Swedish University of Agricultural Sciences. Department of Forest Resource Management and Geomatics, Acta Universitatis Agriculturae Sueciae. Silvestria 17.
    • (1997) Estimation of Forest Variables Using Satellite Image Data and Airborne Lidar
    • Nilsson, M.1
  • 41
  • 43
    • 34250374908 scopus 로고    scopus 로고
    • The k-MSN method for the prediction of species-specific stand attributes using air-borne laser scanning and aerial photographs
    • Packalén P, Maltamo M, 2007. The k-MSN method for the prediction of species-specific stand attributes using air-borne laser scanning and aerial photographs. Remote Sensing Environ 109: 328-341.
    • (2007) Remote Sensing Environ , vol.109 , pp. 328-341
    • Packalén, P.1    Maltamo, M.2
  • 44
    • 4143127743 scopus 로고    scopus 로고
    • Seeing the trees in the forest: Using LiDAR and multispectral data fusion with local filtering and variable window size for estimating tree height
    • Popescu SC, Wynne RH, 2004. Seeing the trees in the forest: using LiDAR and multispectral data fusion with local filtering and variable window size for estimating tree height. Photogrammetric Engineering & Remote Sensing 70(5): 589-604.
    • (2004) Photogrammetric Engineering & Remote Sensing , vol.70 , Issue.5 , pp. 589-604
    • Popescu, S.C.1    Wynne, R.H.2
  • 45
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel Eigen value problem
    • Scḧlkopf B, Smola A, Müller KR, 1998. Nonlinear component analysis as a kernel Eigen value problem. Neural Computation 10: 1299-1319.
    • (1998) Neural Computation , vol.10 , pp. 1299-1319
    • Scḧlkopf, B.1    Smola, A.2    Müller, K.R.3
  • 46
    • 58149237695 scopus 로고    scopus 로고
    • A comparison of support vector machine and decision tree classifications using satellite data of Langkawi Island
    • Shafri HZM, Ramle FSH, 2009. A comparison of support vector machine and decision tree classifications using satellite data of Langkawi Island. Information Technology Journal 8: 64-70.
    • (2009) Information Technology Journal , vol.8 , pp. 64-70
    • Shafri, H.Z.M.1    Ramle, F.S.H.2
  • 47
    • 84877298110 scopus 로고    scopus 로고
    • Forest attributes imputation using machine-learning methods and ASTER data: Comparison of k-NN, SVR and random forest regression algorithms
    • Shataee Sh, Kalbi S, Fallah A, Pelz D, 2012. Forest attributes imputation using machine-learning methods and ASTER data: comparison of k-NN, SVR and random forest regression algorithms. International Journal of Remote Sensing 33: 6254-6280.
    • (2012) International Journal of Remote Sensing , vol.33 , pp. 6254-6280
    • Shataee, S.1    Kalbi, S.2    Fallah, A.3    Pelz, D.4
  • 48
    • 77149165995 scopus 로고    scopus 로고
    • Comparison of different non-parametric growth imputation methods in the presence of correlated observations
    • Sironen S, Kangas A, Maltamo M, 2010. Comparison of different non-parametric growth imputation methods in the presence of correlated observations. Forestry 83(1): 39-51.
    • (2010) Forestry , vol.83 , Issue.1 , pp. 39-51
    • Sironen, S.1    Kangas, A.2    Maltamo, M.3
  • 49
    • 77954756986 scopus 로고    scopus 로고
    • Estimating vegetation height and canopy cover from remotely sensed data with machine learning
    • Stojanova D, Panov P, Gjorgjioski V, Kobler A, Dzeroski S, 2010. Estimating vegetation height and canopy cover from remotely sensed data with machine learning. Ecological Informatics 5: 256-266.
    • (2010) Ecological Informatics , vol.5 , pp. 256-266
    • Stojanova, D.1    Panov, P.2    Gjorgjioski, V.3    Kobler, A.4    Dzeroski, S.5
  • 50
    • 77958496883 scopus 로고    scopus 로고
    • A comparison of different methods for forest resource estimation using information from airborne laser scanning and CIR ortho-photos
    • Straub C, Weinacker H, Koch B, 2010. A comparison of different methods for forest resource estimation using information from airborne laser scanning and CIR ortho-photos. European Journal of Remote Sensing 129: 1069-1080.
    • (2010) European Journal of Remote Sensing , vol.129 , pp. 1069-1080
    • Straub, C.1    Weinacker, H.2    Koch, B.3
  • 52
    • 33644775094 scopus 로고    scopus 로고
    • Development of filtering, segmentation and modelling modules for lidar and multispectral data as a fundament of an automatic forest inventory system
    • University of Freiburg, Freiburg, Germany
    • Weinacker H, Koch B, Heyder U, Weinacker R, 2004. Development of filtering, segmentation and modelling modules for lidar and multispectral data as a fundament of an automatic forest inventory system. In: ISPRS Working Group VIII/2 "Laser scanners for forest and landscape assessment". University of Freiburg, Freiburg, Germany.
    • (2004) ISPRS Working Group VIII/2 Laser Scanners For Forest and Landscape Assessment
    • Weinacker, H.1    Koch, B.2    Heyder, U.3    Weinacker, R.4
  • 53
    • 55349114714 scopus 로고    scopus 로고
    • Sub pixel urban land cover estimation: Comparing cubist, random forests, and support vector regression
    • Walton T, 2008. Sub pixel urban land cover estimation: comparing cubist, random forests, and support vector regression. Photogrammetric Engineering & Remote Sensing 74(10): 1213-1222.
    • (2008) Photogrammetric Engineering & Remote Sensing , vol.74 , Issue.10 , pp. 1213-1222
    • Walton, T.1
  • 55
    • 0032468514 scopus 로고    scopus 로고
    • Optical remote-sensing techniques for the assessment of forest inventory and biophysical parameters
    • Wulder M, 1998. Optical remote-sensing techniques for the assessment of forest inventory and biophysical parameters. Progress in Physical Geography 22: 4494-76.
    • (1998) Progress In Physical Geography , vol.22 , pp. 4494-4496
    • Wulder, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.