메뉴 건너뛰기




Volumn 672, Issue , 2010, Pages 187-198

Preprocessing input data for machine learning by FCA

Author keywords

[No Author keywords available]

Indexed keywords

BENCHMARK DATASETS; COMPARISON OF PERFORMANCE; DECISION TREE INDUCTION; EXPERIMENTAL EVALUATION; FORMAL CONCEPTS; INPUT DATAS; PRE-PROCESSING METHOD;

EID: 84889599615     PISSN: 16130073     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (7)

References (15)
  • 1
    • 71749101259 scopus 로고    scopus 로고
    • Discovery of optimal factors in binary data via a novel method of matrix decomposition
    • Belohlavek R., Vychodil V.: Discovery of optimal factors in binary data via a novel method of matrix decomposition. J. Comput. System Sci 76(1)(2010), 3-20.
    • (2010) J. Comput. System Sci , vol.76 , Issue.1 , pp. 3-20
    • Belohlavek, R.1    Vychodil, V.2
  • 3
    • 9444220782 scopus 로고    scopus 로고
    • A comparative study of FCA-based supervised classification algorithms
    • Proc. ICFCA 2004
    • Fu H., Fu H., Njiwoua P., Mephu Nguifo E.: A comparative study of FCA-based supervised classification algorithms. In: Proc. ICFCA 2004, LNAI 2961, 2004, pp. 313-320.
    • (2004) LNAI , vol.2961 , pp. 313-320
    • Fu, H.1    Fu, H.2    Njiwoua, P.3    Mephu Nguifo, E.4
  • 6
    • 9444283784 scopus 로고    scopus 로고
    • Machine learning and formal concept analysis
    • Proc. ICFCA 2004
    • Kuznetsov S. O.: Machine learning and formal concept analysis. In: Proc. ICFCA 2004, LNAI 2961, 2004, pp. 287-312.
    • (2004) LNAI , vol.2961 , pp. 287-312
    • Kuznetsov, S.O.1
  • 7
    • 0000942050 scopus 로고
    • A theory and methodology of inductive learning
    • Michalski R. S.: A theory and methodology of inductive learning. Artificial Intelligence 20(1983), 111-116.
    • (1983) Artificial Intelligence , vol.20 , pp. 111-116
    • Michalski, R.S.1
  • 8
    • 67650466137 scopus 로고    scopus 로고
    • What can formal concept analysis do for data warehouses?
    • Proc. ICFCA 2009
    • Missaoui R., Kwuida L.: What Can Formal Concept Analysis Do for Data Warehouses? In Proc. ICFCA 2009, LNAI 5548, 2009, 58-65.
    • (2009) LNAI , vol.5548 , pp. 58-65
    • Missaoui, R.1    Kwuida, L.2
  • 9
    • 85140468046 scopus 로고
    • ID2-of-3: Constructive induction of M-of-N concepts for discriminators in decision trees
    • Murphy P. M., Pazzani M. J.: ID2-of-3: constructive induction of M-of-N concepts for discriminators in decision trees. In Proc. of the Eight Int.Workshop on Machine Learning, 1991, 183-187.
    • (1991) Proc. of the Eight Int.Workshop on Machine Learning , pp. 183-187
    • Murphy, P.M.1    Pazzani, M.J.2
  • 11
    • 0025389210 scopus 로고
    • Boolean feature discovery in empirical learning
    • Pagallo G., Haussler D.: Boolean feature discovery in empirical learning. Machine Learning 5(1)(1990), 71-100.
    • (1990) Machine Learning , vol.5 , Issue.1 , pp. 71-100
    • Pagallo, G.1    Haussler, D.2
  • 12
    • 56749132927 scopus 로고    scopus 로고
    • Iterative feature construction for improving inductive learning algorithms
    • Piramuthu S., Sikora R. T.: Iterative feature construction for improving inductive learning algorithms. Expert Systems with Applications 36(2, part 2)(2009), 3401-3406.
    • (2009) Expert Systems with Applications , vol.36 , Issue.9 PART 2 , pp. 3401-3406
    • Piramuthu, S.1    Sikora, R.T.2
  • 15
    • 9444248155 scopus 로고    scopus 로고
    • Formal concept analysis for knowledge discovery and data mining: The new challenges
    • Proc. ICFCA 2004
    • Valtchev P., Missaoui R., Godin R.: Formal concept analysis for knowledge discovery and data mining: The new challenges. In: Proc. ICFCA 2004, LNAI 2961, 2004, pp. 352-371.
    • (2004) LNAI , vol.2961 , pp. 352-371
    • Valtchev, P.1    Missaoui, R.2    Godin, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.