-
1
-
-
71749101259
-
Discovery of optimal factors in binary data via a novel method of matrix decomposition
-
Belohlavek R., Vychodil V.: Discovery of optimal factors in binary data via a novel method of matrix decomposition. J. Comput. System Sci 76(1)(2010), 3-20.
-
(2010)
J. Comput. System Sci
, vol.76
, Issue.1
, pp. 3-20
-
-
Belohlavek, R.1
Vychodil, V.2
-
2
-
-
0003802343
-
-
Chapman & Hall, NY
-
Breiman L., Friedman J. H., Olshen R., Stone C. J.: Classification and Regression Trees. Chapman & Hall, NY, 1984.
-
(1984)
Classification and Regression Trees
-
-
Breiman, L.1
Friedman, J.H.2
Olshen, R.3
Stone, C.J.4
-
3
-
-
9444220782
-
A comparative study of FCA-based supervised classification algorithms
-
Proc. ICFCA 2004
-
Fu H., Fu H., Njiwoua P., Mephu Nguifo E.: A comparative study of FCA-based supervised classification algorithms. In: Proc. ICFCA 2004, LNAI 2961, 2004, pp. 313-320.
-
(2004)
LNAI
, vol.2961
, pp. 313-320
-
-
Fu, H.1
Fu, H.2
Njiwoua, P.3
Mephu Nguifo, E.4
-
6
-
-
9444283784
-
Machine learning and formal concept analysis
-
Proc. ICFCA 2004
-
Kuznetsov S. O.: Machine learning and formal concept analysis. In: Proc. ICFCA 2004, LNAI 2961, 2004, pp. 287-312.
-
(2004)
LNAI
, vol.2961
, pp. 287-312
-
-
Kuznetsov, S.O.1
-
7
-
-
0000942050
-
A theory and methodology of inductive learning
-
Michalski R. S.: A theory and methodology of inductive learning. Artificial Intelligence 20(1983), 111-116.
-
(1983)
Artificial Intelligence
, vol.20
, pp. 111-116
-
-
Michalski, R.S.1
-
8
-
-
67650466137
-
What can formal concept analysis do for data warehouses?
-
Proc. ICFCA 2009
-
Missaoui R., Kwuida L.: What Can Formal Concept Analysis Do for Data Warehouses? In Proc. ICFCA 2009, LNAI 5548, 2009, 58-65.
-
(2009)
LNAI
, vol.5548
, pp. 58-65
-
-
Missaoui, R.1
Kwuida, L.2
-
9
-
-
85140468046
-
ID2-of-3: Constructive induction of M-of-N concepts for discriminators in decision trees
-
Murphy P. M., Pazzani M. J.: ID2-of-3: constructive induction of M-of-N concepts for discriminators in decision trees. In Proc. of the Eight Int.Workshop on Machine Learning, 1991, 183-187.
-
(1991)
Proc. of the Eight Int.Workshop on Machine Learning
, pp. 183-187
-
-
Murphy, P.M.1
Pazzani, M.J.2
-
11
-
-
0025389210
-
Boolean feature discovery in empirical learning
-
Pagallo G., Haussler D.: Boolean feature discovery in empirical learning. Machine Learning 5(1)(1990), 71-100.
-
(1990)
Machine Learning
, vol.5
, Issue.1
, pp. 71-100
-
-
Pagallo, G.1
Haussler, D.2
-
12
-
-
56749132927
-
Iterative feature construction for improving inductive learning algorithms
-
Piramuthu S., Sikora R. T.: Iterative feature construction for improving inductive learning algorithms. Expert Systems with Applications 36(2, part 2)(2009), 3401-3406.
-
(2009)
Expert Systems with Applications
, vol.36
, Issue.9 PART 2
, pp. 3401-3406
-
-
Piramuthu, S.1
Sikora, R.T.2
-
14
-
-
25144439604
-
-
Addison Wesley, Boston, MA
-
Tan P.-N., Steinbach M., Kumar V.: Introduction to Data Mining. Addison Wesley, Boston, MA, 2006.
-
(2006)
Introduction to Data Mining
-
-
Tan, P.-N.1
Steinbach, M.2
Kumar, V.3
-
15
-
-
9444248155
-
Formal concept analysis for knowledge discovery and data mining: The new challenges
-
Proc. ICFCA 2004
-
Valtchev P., Missaoui R., Godin R.: Formal concept analysis for knowledge discovery and data mining: The new challenges. In: Proc. ICFCA 2004, LNAI 2961, 2004, pp. 352-371.
-
(2004)
LNAI
, vol.2961
, pp. 352-371
-
-
Valtchev, P.1
Missaoui, R.2
Godin, R.3
|