메뉴 건너뛰기




Volumn , Issue , 2006, Pages 1-268

A Statistical Approach to Neural Networks for Pattern Recognition

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84889332768     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1002/9780470148150     Document Type: Book
Times cited : (41)

References (260)
  • 1
    • 0004270045 scopus 로고
    • Introduction to Optimization Methods
    • Chapman and Hall, London
    • Adby, P. R. and Dempster, M. A. H. (1974). Introduction to Optimization Methods. Chapman and Hall, London.
    • (1974)
    • Adby, P.R.1    Dempster, M.A.H.2
  • 2
    • 0003116243 scopus 로고
    • Scaling and generalization in neural networks: a case study
    • Touretzky et al. (1988)
    • Ahmed, S. and Tesauro, G. (1988). Scaling and generalization in neural networks: a case study. In Touretzky et al. (1988), pp. 3-9.
    • (1988) , pp. 3-9
    • Ahmed, S.1    Tesauro, G.2
  • 3
    • 6344232102 scopus 로고    scopus 로고
    • Neural network uncertainty assessment using bayesian statistics: A remote sensing application
    • Aires, F., Prigent, C, and Rossow, W. B. (2004). Neural network uncertainty assessment using bayesian statistics: A remote sensing application. Neural Computation, 16(11):2415-2458.
    • (2004) Neural Computation , vol.16 , Issue.11 , pp. 2415-2458
    • Aires, F.1    Prigent, C.2    Rossow, W.B.3
  • 4
    • 0003640023 scopus 로고
    • Statistical Prediction Analysis
    • Cambridge University Press, Cambridge
    • Aitchison, J. and Dunsmore, I. R. (1975). Statistical Prediction Analysis. Cambridge University Press, Cambridge.
    • (1975)
    • Aitchison, J.1    Dunsmore, I.R.2
  • 5
    • 84889490479 scopus 로고
    • Lecture Notes in Computer Science 412, Neural Networks EURASIP Workshop Sesimbra, Portugal
    • Springer-Verlag, Berlin
    • Almeida, L. and Wellekens, C, editors (1990). Lecture Notes in Computer Science 412, Neural Networks EURASIP Workshop Sesimbra, Portugal. Springer-Verlag, Berlin.
    • (1990)
    • Almeida, L.1    Wellekens, C.2
  • 6
    • 0003526044 scopus 로고
    • Gal: Networks that grow when they learn and shrink when they forget
    • Preprint, International Computer Science Institute, Berkeley, CA
    • Alpaydin, E. (1991). Gal: Networks that grow when they learn and shrink when they forget. Preprint, International Computer Science Institute, Berkeley, CA.
    • (1991)
    • Alpaydin, E.1
  • 7
    • 0031236925 scopus 로고    scopus 로고
    • Asymptotic statistical theory of overtraining and cross-validation
    • Previously, University of Tokyo Techreport: METR 95-06, 1995
    • Amari, S., Murata, N., Miiller, K.-R., Finke, M., and Yang, H. (1997). Asymptotic statistical theory of overtraining and cross-validation. IEEE Transactions on Neural Networks, 8(5). Previously, University of Tokyo Techreport: METR 95-06, 1995.
    • (1997) IEEE Transactions on Neural Networks , vol.8 , Issue.5
    • Amari, S.1    Murata, N.2    Miiller, K.-R.3    Finke, M.4    Yang, H.5
  • 8
    • 0004140522 scopus 로고
    • Neurocomputing: Foundations of Research
    • MIT Press, Cambridge, MA
    • Anderson, J. A. and Rosenfeld, E., editors (1988). Neurocomputing: Foundations of Research. MIT Press, Cambridge, MA.
    • (1988)
    • Anderson, J.A.1    Rosenfeld, E.2
  • 9
    • 0003648234 scopus 로고
    • An Introduction to Multivariate Statistical Analysis
    • Wiley, New York, second edition
    • Anderson, T. W. (1984). An Introduction to Multivariate Statistical Analysis. Wiley, New York, second edition.
    • (1984)
    • Anderson, T.W.1
  • 10
    • 0001195789 scopus 로고
    • Classification into two multivariate normal distributions with different covariance matrices
    • Anderson, T. W. and Bahadur, R. R. (1962). Classification into two multivariate normal distributions with different covariance matrices. Annals of Mathematical Statistics, 33:420-431.
    • (1962) Annals of Mathematical Statistics , vol.33 , pp. 420-431
    • Anderson, T.W.1    Bahadur, R.R.2
  • 11
    • 0004156798 scopus 로고
    • Calculus
    • Vol II. Wiley, New York
    • Apostol, T. (1967). Calculus, Vol. I & Vol II. Wiley, New York.
    • (1967) , vol.I
    • Apostol, T.1
  • 12
    • 0013359398 scopus 로고
    • Computing with arrays of bell-shaped and sigmoid functions
    • Lippmann et al. (1991)
    • Baldi, P. (1991). Computing with arrays of bell-shaped and sigmoid functions. In Lippmann et al. (1991), pp. 735-742.
    • (1991) , pp. 735-742
    • Baldi, P.1
  • 13
    • 0029343566 scopus 로고
    • Learning in linear neural networks: A survey
    • Baldi, P. and Hornik, K. (1995). Learning in linear neural networks: A survey. IEEE Transactions on Neural Networks, 6(4):837-858.
    • (1995) IEEE Transactions on Neural Networks , vol.6 , Issue.4 , pp. 837-858
    • Baldi, P.1    Hornik, K.2
  • 14
    • 0040084012 scopus 로고
    • A neural-net training program based on conjugate-gradient optimization
    • Technical Report CSE 89-014, Oregon Graduate Institute of Science and Technology
    • Barnard, E. and Cole, R. A. (1989). A neural-net training program based on conjugate-gradient optimization. Technical Report CSE 89-014, Oregon Graduate Institute of Science and Technology.
    • (1989)
    • Barnard, E.1    Cole, R.A.2
  • 15
    • 0002167090 scopus 로고
    • Predicted squared error: A criterion for automatic model selection
    • Farlow, S. J., editor, Self-organizing Methods in Modeling. Marcel Decker, New York
    • Barron, A. R. (1984). Predicted squared error: A criterion for automatic model selection. In Farlow, S. J., editor, Self-organizing Methods in Modeling. Marcel Decker, New York.
    • (1984)
    • Barron, A.R.1
  • 16
    • 0032028728 scopus 로고    scopus 로고
    • The sample complexity of pattern classification with neural networks: The size of the weights is more important than the size of the network
    • Bartlett, P. L. (1998). The sample complexity of pattern classification with neural networks: The size of the weights is more important than the size of the network. IEEE Transactions on Information Theory, 44(2):525-536.
    • (1998) IEEE Transactions on Information Theory , vol.44 , Issue.2 , pp. 525-536
    • Bartlett, P.L.1
  • 17
    • 0011729314 scopus 로고
    • A matrix method for optimizing a neural network
    • Barton, S. A. (1991). A matrix method for optimizing a neural network. Neural Computation, 3:450-459.
    • (1991) Neural Computation , vol.3 , pp. 450-459
    • Barton, S.A.1
  • 18
    • 0001024110 scopus 로고
    • First- and second-order methods for learning: between steepest descent and Newton's method
    • Battiti, R. (1992). First- and second-order methods for learning: between steepest descent and Newton's method. Neural Computation, 4:141-166.
    • (1992) Neural Computation , vol.4 , pp. 141-166
    • Battiti, R.1
  • 19
    • 0001160588 scopus 로고
    • What size net gives valid generalization?
    • Baum, E. and Haussler, D. (1989). What size net gives valid generalization? Neural Computation, 1:151-160.
    • (1989) Neural Computation , vol.1 , pp. 151-160
    • Baum, E.1    Haussler, D.2
  • 20
    • 84957345624 scopus 로고
    • When are k-nearest neighbor and back propagation accurate for feasible sized sets of examples?
    • Almeida and Wellekens (1990)
    • Baum, E. B. (1990). When are k-nearest neighbor and back propagation accurate for feasible sized sets of examples? In Almeida and Wellekens (1990), pp. 2-25.
    • (1990) , pp. 2-25
    • Baum, E.B.1
  • 21
    • 0004239503 scopus 로고
    • The new S Language
    • Wads worth and Brooks, Monteray, CA
    • Becker, R. A., Chambers, J. M, and Wilks, A. R. (1988). The new S Language. Wads worth and Brooks, Monteray, CA.
    • (1988)
    • Becker, R.A.1    Chambers, J.M.2    Wilks, A.R.3
  • 22
    • 0002906163 scopus 로고
    • Improving the convergence of back-propagation learning with second order methods
    • Touretzky et al. (1988)
    • Becker, S. and le Cun, Y. (1989). Improving the convergence of back-propagation learning with second order methods. In Touretzky et al. (1988), pp. 29-37.
    • (1989) , pp. 29-37
    • Becker, S.1    Le Cun, Y.2
  • 24
    • 0000913755 scopus 로고
    • Spatial interaction and the statistical analysis of lattice systems (with discussion)
    • Besag, J. (1974). Spatial interaction and the statistical analysis of lattice systems (with discussion). Journal of the Royal Statistical Society B, 36(2):192-236.
    • (1974) Journal of the Royal Statistical Society B , vol.36 , Issue.2 , pp. 192-236
    • Besag, J.1
  • 25
    • 0000013152 scopus 로고
    • On the statistical analysis of dirty pictures (with discussion)
    • Besag, J. (1986). On the statistical analysis of dirty pictures (with discussion). Journal of the Royal Statistical Society B, 48(3):259-302.
    • (1986) Journal of the Royal Statistical Society B , vol.48 , Issue.3 , pp. 259-302
    • Besag, J.1
  • 26
    • 0004302610 scopus 로고
    • Probability and Measure
    • Wiley, New York, 3rd edition
    • Billingsley, P. (1995). Probability and Measure. Wiley, New York, 3rd edition.
    • (1995)
    • Billingsley, P.1
  • 27
    • 0001515164 scopus 로고
    • Maximum likelihood in three-way contingency tables
    • Birch, M. W. (1963). Maximum likelihood in three-way contingency tables. Journal of the Royal Statistical Society B, 25:220-233.
    • (1963) Journal of the Royal Statistical Society B , vol.25 , pp. 220-233
    • Birch, M.W.1
  • 29
    • 0027659357 scopus 로고
    • Curvature-driven smoothing: a learning algorithm for feedforward networks
    • Bishop, C. M. (1993). Curvature-driven smoothing: a learning algorithm for feedforward networks. IEEE Transactions on Neural Networks, 4:882-884.
    • (1993) IEEE Transactions on Neural Networks , vol.4 , pp. 882-884
    • Bishop, C.M.1
  • 30
    • 0003487601 scopus 로고
    • Neural Networks for Pattern Recognition
    • Oxford University Press, Oxford
    • Bishop, C. M. (1995a). Neural Networks for Pattern Recognition. Oxford University Press, Oxford.
    • (1995)
    • Bishop, C.M.1
  • 31
    • 0001740650 scopus 로고
    • Training with noise is equivalent to Tikohonov regulariza-tion
    • Bishop, C. M. (1995b). Training with noise is equivalent to Tikohonov regulariza-tion. Neural Computation, 7:108-116.
    • (1995) Neural Computation , vol.7 , pp. 108-116
    • Bishop, C.M.1
  • 32
    • 0000245743 scopus 로고    scopus 로고
    • Statistical modelling: The two cultures (with discussion)
    • Breiman, L. (2001). Statistical modelling: The two cultures (with discussion). Statistical Science, 16(3):199-231.
    • (2001) Statistical Science , vol.16 , Issue.3 , pp. 199-231
    • Breiman, L.1
  • 33
    • 0003802343 scopus 로고
    • Classification and Regression Trees
    • Wadsworth and Brooks/Cole, Monterey, CA
    • Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J. (1984). Classification and Regression Trees. Wadsworth and Brooks/Cole, Monterey, CA.
    • (1984)
    • Breiman, L.1    Friedman, J.H.2    Olshen, R.A.3    Stone, C.J.4
  • 34
    • 0012812628 scopus 로고
    • Nonlinear discriminant analysis via ACE and scaling
    • Technical Report 40, Dept. of Statistics, University of California, Berkeley
    • Breiman, L. and Ihaka, R. (1984). Nonlinear discriminant analysis via ACE and scaling. Technical Report 40, Dept. of Statistics, University of California, Berkeley.
    • (1984)
    • Breiman, L.1    Ihaka, R.2
  • 35
    • 0001699291 scopus 로고
    • Training stochastic model recognition algorithms as networks can lead to maximum mutual information estimation of parameters
    • Touretzky (1990)
    • Bridle, J. S. (1990). Training stochastic model recognition algorithms as networks can lead to maximum mutual information estimation of parameters. In Touretzky (1990), pp. 211-217.
    • (1990) , pp. 211-217
    • Bridle, J.S.1
  • 37
    • 84889394370 scopus 로고
    • Linear smoothers and additive models
    • Statistical Research Reports 50, AT&T Bell Laboratories
    • Buja, A., Hastie, T., and Tibshirani, R. (1987). Linear smoothers and additive models. Statistical Research Reports 50, AT&T Bell Laboratories.
    • (1987)
    • Buja, A.1    Hastie, T.2    Tibshirani, R.3
  • 38
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges, C. J. C. (1998). A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2(1):121-167.
    • (1998) Data Mining and Knowledge Discovery , vol.2 , Issue.1 , pp. 121-167
    • Burges, C.J.C.1
  • 39
    • 0000056988 scopus 로고
    • The influence function as an aid in outlier detection in discriminant analysis
    • Campbell, N. A. (1978). The influence function as an aid in outlier detection in discriminant analysis. Journal of the Royal Statistical Society Series B, 27(3):251-258.
    • (1978) Journal of the Royal Statistical Society Series B , vol.27 , Issue.3 , pp. 251-258
    • Campbell, N.A.1
  • 40
    • 0000116015 scopus 로고
    • The geometry of canonical variate analysis
    • Campbell, N. A. and Atchley, W. R. (1981). The geometry of canonical variate analysis. Systematic Zoology, 30(3):268-280.
    • (1981) Systematic Zoology , vol.30 , Issue.3 , pp. 268-280
    • Campbell, N.A.1    Atchley, W.R.2
  • 41
    • 84889334925 scopus 로고
    • Neighbour relations and remotely sensed data
    • Internal report, Division of Mathematics and Statistics, CSIRO, Western Australia
    • Campbell, N. A. and Kiiveri, H. T. (1988). Neighbour relations and remotely sensed data. Internal report, Division of Mathematics and Statistics, CSIRO, Western Australia.
    • (1988)
    • Campbell, N.A.1    Kiiveri, H.T.2
  • 42
    • 84990538731 scopus 로고
    • Canonical variate analysis with spatially-correlated data
    • Campbell, N. A. and Kiiveri, H. T. (1993). Canonical variate analysis with spatially-correlated data. Australian Journal of Statistics, 35(3):333-344.
    • (1993) Australian Journal of Statistics , vol.35 , Issue.3 , pp. 333-344
    • Campbell, N.A.1    Kiiveri, H.T.2
  • 43
    • 84970548695 scopus 로고
    • A multivariate study of variation in two species of rock crab of the genus leptographus
    • Campbell, N. A. and Mahon, R. J. (1974). A multivariate study of variation in two species of rock crab of the genus leptographus. Australian Journal of Zoology, 22:417-425.
    • (1974) Australian Journal of Zoology , vol.22 , pp. 417-425
    • Campbell, N.A.1    Mahon, R.J.2
  • 44
    • 84889304962 scopus 로고
    • A conjugate gradient algorithm for the efficient training of artificial neural networks
    • Technical Report 90/06, Centre for Research into Sensory Technology, University of Western Australia
    • Charalambous, C. (1990). A conjugate gradient algorithm for the efficient training of artificial neural networks. Technical Report 90/06, Centre for Research into Sensory Technology, University of Western Australia.
    • (1990)
    • Charalambous, C.1
  • 45
    • 85025505893 scopus 로고
    • Generalized performance of overtrained back-propagation networks
    • Almeida and Wellekens (1990)
    • Chauvin, Y. (1990). Generalized performance of overtrained back-propagation networks. In Almeida and Wellekens (1990), pp. 46-56.
    • (1990) , pp. 46-56
    • Chauvin, Y.1
  • 46
    • 0028428006 scopus 로고
    • robust backpropagation learning algorithm for function approximation
    • Chen, D. S. and Jain, R. C. (1994). robust backpropagation learning algorithm for function approximation. Neural Networks, 5(3):467-479.
    • (1994) Neural Networks , vol.5 , Issue.3 , pp. 467-479
    • Chen, D.S.1    Jain, R.C.2
  • 47
    • 84972539015 scopus 로고
    • Neural networks: A review from a statistical perspective (with discussion)
    • Cheng, B. and Titterington, D. M. (1994). Neural networks: A review from a statistical perspective (with discussion). Statistical Science, 9(1):2-54.
    • (1994) Statistical Science , vol.9 , Issue.1 , pp. 2-54
    • Cheng, B.1    Titterington, D.M.2
  • 48
    • 0001933967 scopus 로고
    • Mapping with imaging spectrometer data using the complete band shape least-squares algorithm simultaneously fit to multiple spectral features from multiple materials
    • Proceedings of the Third Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Workshop
    • Clark, R., Swayze, G., Gallagher, A., Gorelick, N., and Kruse, F. (1991). Mapping with imaging spectrometer data using the complete band shape least-squares algorithm simultaneously fit to multiple spectral features from multiple materials. In Proceedings of the Third Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Workshop, pp. 2-3.
    • (1991) , pp. 2-3
    • Clark, R.1    Swayze, G.2    Gallagher, A.3    Gorelick, N.4    Kruse, F.5
  • 49
    • 0000527012 scopus 로고
    • Uniqueness and Frechet differentiability of functional solutions to maximum likelihood type equations
    • Clarke, B. R. (1983). Uniqueness and Frechet differentiability of functional solutions to maximum likelihood type equations. Annals of Statistics, 11 (4): 1196-1205.
    • (1983) Annals of Statistics , vol.11 , Issue.4 , pp. 1196-1205
    • Clarke, B.R.1
  • 50
    • 0005423057 scopus 로고
    • Geometry and linear discrimination
    • Clunies-Ross, C. W. and Riffenburgh, R. H. (1960). Geometry and linear discrimination. Biometrika, 47:185-189.
    • (1960) Biometrika , vol.47 , pp. 185-189
    • Clunies-Ross, C.W.1    Riffenburgh, R.H.2
  • 51
    • 0004225682 scopus 로고
    • Residuals and Influence in Regression
    • Monographs on Statistics and Applied Probability. Chapman and Hall, London
    • Cook, R. D. and Weisberg, S. (1982). Residuals and Influence in Regression. Monographs on Statistics and Applied Probability. Chapman and Hall, London.
    • (1982)
    • Cook, R.D.1    Weisberg, S.2
  • 52
    • 84889463978 scopus 로고    scopus 로고
    • The optimal classification using a linear discriminant for two point classes having known mean and covariance
    • Published electronically January 11, 2002, Journal of Multivariate Analysis
    • Cooke, T. and Peake, M. (2002). The optimal classification using a linear discriminant for two point classes having known mean and covariance. Published electronically January 11, 2002, Journal of Multivariate Analysis.
    • (2002)
    • Cooke, T.1    Peake, M.2
  • 53
    • 0003458535 scopus 로고
    • Methods of Mathematical Physics
    • Wiley-Interscience Publications, New York
    • Courant, D. and Hilbert, D. (1953). Methods of Mathematical Physics. Wiley-Interscience Publications, New York.
    • (1953)
    • Courant, D.1    Hilbert, D.2
  • 54
    • 0000149045 scopus 로고
    • Two further applications of a model for binary regression
    • Cox, D. R. (1958). Two further applications of a model for binary regression. Biometrika, 45:562-565.
    • (1958) Biometrika , vol.45 , pp. 562-565
    • Cox, D.R.1
  • 55
    • 0042013924 scopus 로고
    • Robust logistic discrimination
    • Cox, T. F. and Ferry, G. (1991). Robust logistic discrimination. Biometrika, 7(4):841-849.
    • (1991) Biometrika , vol.7 , Issue.4 , pp. 841-849
    • Cox, T.F.1    Ferry, G.2
  • 56
    • 0041729950 scopus 로고    scopus 로고
    • A robust logistic discrimination model
    • Cox, T. F. and Pearce, K. F. (1997). A robust logistic discrimination model. Statistics and Computing, 7:155-161.
    • (1997) Statistics and Computing , vol.7 , pp. 155-161
    • Cox, T.F.1    Pearce, K.F.2
  • 57
    • 0001837343 scopus 로고
    • Complexity theory of neural networks and classification problems
    • Almeida and Wellekens (1990)
    • Cybenko, G. (1990). Complexity theory of neural networks and classification problems. In Almeida and Wellekens (1990), pp. 46-55.
    • (1990) , pp. 46-55
    • Cybenko, G.1
  • 58
    • 0014097063 scopus 로고
    • A general maximum likelihood discriminant
    • Day, N. E. and Kerridge, D. F. (1967). A general maximum likelihood discriminant. Biometrics, 23:313-323.
    • (1967) Biometrics , vol.23 , pp. 313-323
    • Day, N.E.1    Kerridge, D.F.2
  • 59
    • 0003641572 scopus 로고
    • A Practical Guide to Splines, volume 27 of Applied Mathematical Sciences
    • Springer-Verlag, Berlin
    • de Boor, C. (1978). A Practical Guide to Splines, volume 27 of Applied Mathematical Sciences. Springer-Verlag, Berlin.
    • (1978)
    • De Boor, C.1
  • 60
    • 0001493668 scopus 로고
    • Asymptotics of graphical projection pursuit
    • Diaconis, P. and Freedman, D. (1984). Asymptotics of graphical projection pursuit. Annals of Statistics, 12(3):793-815.
    • (1984) Annals of Statistics , vol.12 , Issue.3 , pp. 793-815
    • Diaconis, P.1    Freedman, D.2
  • 61
    • 0008411625 scopus 로고    scopus 로고
    • Statistical tests for comparing supervised classification learning algorithms
    • OR 97331, Oregan State University
    • Dietterich, T. G. (1996). Statistical tests for comparing supervised classification learning algorithms. OR 97331, Oregan State University.
    • (1996)
    • Dietterich, T.G.1
  • 62
    • 0003402804 scopus 로고
    • An Introduction to Generalized Linear Models
    • Chapman and Hall, London
    • Dobson, A. J. (1990). An Introduction to Generalized Linear Models. Chapman and Hall, London.
    • (1990)
    • Dobson, A.J.1
  • 63
    • 0011520483 scopus 로고    scopus 로고
    • High-dimensional data analysis: The curses and blessings of dimensionality
    • Available at
    • Donoho, D. (2000). High-dimensional data analysis: The curses and blessings of dimensionality. Available at www-stat.stanford.edu/~donoho/Lectures/AMS2000.
    • (2000)
    • Donoho, D.1
  • 64
    • 84889408658 scopus 로고    scopus 로고
    • Evaluating contextural information models
    • Unpublished CMIS Remote Sensing and Monitoring Task Report, CSIRO, Floreat Park, Western Australia
    • Dunne, Ft. (1997). Evaluating contextural information models. Unpublished CMIS Remote Sensing and Monitoring Task Report, CSIRO, Floreat Park, Western Australia.
    • (1997)
    • Dunne, F.1
  • 65
    • 84889267296 scopus 로고    scopus 로고
    • A graphical method of selecting starting values for an MLP model
    • Unpublished CMIS Remote Sensing and Monitoring Task Report, CSIRO, Floreat Park, Western Australia
    • Dunne, R. (2000). A graphical method of selecting starting values for an MLP model. Unpublished CMIS Remote Sensing and Monitoring Task Report, CSIRO, Floreat Park, Western Australia.
    • (2000)
    • Dunne, R.1
  • 66
    • 84889270582 scopus 로고
    • A suite of programs for fitting multi-layer perceptrons in Fortran and S-PLUS - Version 2.1
    • Technical Report 94/05, Murdoch University, Western Australia
    • Dunne, R. and Campbell, N. A. (1994). A suite of programs for fitting multi-layer perceptrons in Fortran and S-PLUS - Version 2.1. Technical Report 94/05, Murdoch University, Western Australia.
    • (1994)
    • Dunne, R.1    Campbell, N.A.2
  • 67
    • 84889280705 scopus 로고
    • Task-based pruning. In Proceedings of the Third Australian Conference on Neural Networks
    • Sydney University Electrical Engineering Department
    • Dunne, R., Campbell, N. A., and Kiiveri, H. T. (1992). Task-based pruning. In Proceedings of the Third Australian Conference on Neural Networks, pp. 166-170. Sydney University Electrical Engineering Department.
    • (1992) , pp. 166-170
    • Dunne, R.1    Campbell, N.A.2    Kiiveri, H.T.3
  • 68
    • 84886193637 scopus 로고
    • The efficiency of logistic regression compared to normal discriminant analysis
    • Efron, B. (1975). The efficiency of logistic regression compared to normal discriminant analysis. Journal of the American Statistical Association, 70:892-898.
    • (1975) Journal of the American Statistical Association , vol.70 , pp. 892-898
    • Efron, B.1
  • 69
    • 84950461478 scopus 로고
    • Estimating the error rate of a prediction rule, improvements on cross-validation
    • Efron, B. (1983). Estimating the error rate of a prediction rule, improvements on cross-validation. Journal of the American Statistical Association, 78:316-331.
    • (1983) Journal of the American Statistical Association , vol.78 , pp. 316-331
    • Efron, B.1
  • 70
    • 0003000735 scopus 로고
    • Fast-learning variations on back-propagation: An empirical study
    • Touretzky (1989)
    • Fahlman, S. E. (1989). Fast-learning variations on back-propagation: An empirical study. In Touretzky (1989), pp. 38-51.
    • (1989) , pp. 38-51
    • Fahlman, S.E.1
  • 71
    • 84889385811 scopus 로고
    • Readme.sonar
    • Text file accompanying the distribution of the sonar data set of Gorman and Sejnowski
    • Fahlman, S. E. (1990). Readme.sonar. Text file accompanying the distribution of the sonar data set of Gorman and Sejnowski.
    • (1990)
    • Fahlman, S.E.1
  • 72
    • 0000764772 scopus 로고
    • The use of multiple measurements in taxonomic problems
    • Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7:179-188.
    • (1936) Annals of Eugenics , vol.7 , pp. 179-188
    • Fisher, R.A.1
  • 73
    • 0003898771 scopus 로고
    • The GLIM System, Release 4 Manual
    • Clarendon Press, Oxford
    • Francis, B., Green, M., and Payne, C. (1993). The GLIM System, Release 4 Manual. Clarendon Press, Oxford.
    • (1993)
    • Francis, B.1    Green, M.2    Payne, C.3
  • 74
    • 84952149204 scopus 로고
    • A statistical view of some chemometrics regression tools (with discussion)
    • Frank, I. E. and Friedman, J. H. (1993). A statistical view of some chemometrics regression tools (with discussion). Technometrics, 35(2): 109-148.
    • (1993) Technometrics , vol.35 , Issue.2 , pp. 109-148
    • Frank, I.E.1    Friedman, J.H.2
  • 75
    • 0002978642 scopus 로고    scopus 로고
    • Experiments with a new boosting algorithm
    • Machine Learning: Proceedings of the Thirteenth International Conference
    • Freund, Y. and Schapire, R. E. (1996). Experiments with a new boosting algorithm. In Machine Learning: Proceedings of the Thirteenth International Conference, pp. 148-156.
    • (1996) , pp. 148-156
    • Freund, Y.1    Schapire, R.E.2
  • 76
    • 0003660631 scopus 로고    scopus 로고
    • Additive logistic regression: a statistical view of boosting
    • Technical report, Department of Statistics, Stanford University
    • Friedman, J., Hastie, T., and Tibshirani, R. (1998). Additive logistic regression: a statistical view of boosting. Technical report, Department of Statistics, Stanford University.
    • (1998)
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 77
    • 0003906335 scopus 로고
    • A variable span smoother
    • Tech. Rep. No. 5, Laboratory for Computational Statistics, Dept. of Statistics, Stanford Univ., California
    • Friedman, J. H. (1984). A variable span smoother. Tech. Rep. No. 5, Laboratory for Computational Statistics, Dept. of Statistics, Stanford Univ., California.
    • (1984)
    • Friedman, J.H.1
  • 79
    • 0002432565 scopus 로고
    • Multivariate adaptive regression splines (with discussion)
    • Friedman, J. H. (1991a). Multivariate adaptive regression splines (with discussion). Annals of Statistics, 19:1-141.
    • (1991) Annals of Statistics , vol.19 , pp. 1-141
    • Friedman, J.H.1
  • 80
    • 84889488380 scopus 로고
    • Unpublished lecture notes, CSIRO, Sydney, Australia
    • Friedman, J. H. (1991b). Unpublished lecture notes, CSIRO, Sydney, Australia.
    • (1991)
    • Friedman, J.H.1
  • 81
    • 0003483421 scopus 로고    scopus 로고
    • On bias, variance, 0/1-loss, and the curse-of-dimensionality
    • Available on
    • Friedman, J. H. (1996). On bias, variance, 0/1-loss, and the curse-of-dimensionality. Available on http://www-stat.stanford.edu/~jhf.
    • (1996)
    • Friedman, J.H.1
  • 82
    • 0003743417 scopus 로고    scopus 로고
    • Stochastic gradient boosting
    • Available at
    • Friedman, J. H. (1999). Stochastic gradient boosting. Available at http:// www-stat.stanford.edu/~jhf/ftp/stobst.ps.
    • (1999)
    • Friedman, J.H.1
  • 83
    • 0003591748 scopus 로고    scopus 로고
    • Greedy function approximation: A gradient boosting machine
    • The 1999 IMS Reitz Lecture. Available at
    • Friedman, J. H. (2000). Greedy function approximation: A gradient boosting machine. The 1999 IMS Reitz Lecture. Available at http://www-stat.Stanford.edu/~jhf/ftp/trebst.ps.
    • (2000)
    • Friedman, J.H.1
  • 84
    • 0024607448 scopus 로고
    • Flexible parsimonious smoothing and additive modeling
    • Friedman, J. H. and Silverman, B. W. (1989). Flexible parsimonious smoothing and additive modeling. Technometrics, 31(1):3-21.
    • (1989) Technometrics , vol.31 , Issue.1 , pp. 3-21
    • Friedman, J.H.1    Silverman, B.W.2
  • 86
    • 0030198493 scopus 로고    scopus 로고
    • A regularity condition of the information matrix of a multilayer perceptron network
    • Fukumizu, K. (1996). A regularity condition of the information matrix of a multilayer perceptron network. Neural Networks, 9(5):871-879.
    • (1996) Neural Networks , vol.9 , Issue.5 , pp. 871-879
    • Fukumizu, K.1
  • 87
    • 0032097263 scopus 로고
    • Introduction to Statistical Pattern Recognition
    • Academic Press, Boston, second edition. [First edition, 1972]
    • Fukunaga, K. (1990). Introduction to Statistical Pattern Recognition. Academic Press, Boston, second edition. [First edition, 1972].
    • (1990)
    • Fukunaga, K.1
  • 88
    • 0024866495 scopus 로고
    • On the approximate realization of continuous mappings by neural networks
    • Funahashi, K. (1989). On the approximate realization of continuous mappings by neural networks. Neural Networks, 2:183-192.
    • (1989) Neural Networks , vol.2 , pp. 183-192
    • Funahashi, K.1
  • 89
    • 33744644177 scopus 로고
    • The analysis of high dimensional spectral curves
    • Proceedings of the Fifth Australian Remote Sensing Conference
    • Furby, S., Kiiveri, H., and Campbell, N. (1990). The analysis of high dimensional spectral curves. In Proceedings of the Fifth Australian Remote Sensing Conference, pp. 175-184.
    • (1990) , pp. 175-184
    • Furby, S.1    Kiiveri, H.2    Campbell, N.3
  • 90
    • 0024123808 scopus 로고
    • Multilayer perceptrons and data analysis
    • IEEE Annual International Conference on Neural Networks
    • Gallinari, P., Thiria, S., and Fogelman-Soulie, F. (1988). Multilayer perceptrons and data analysis. In IEEE Annual International Conference on Neural Networks, volume 1, pp. 391-399.
    • (1988) , vol.1 , pp. 391-399
    • Gallinari, P.1    Thiria, S.2    Fogelman-Soulie, F.3
  • 91
    • 0001942829 scopus 로고
    • Neural networks and the bias/variance dilemma
    • Geman, S., Bienenstock, E., and Doursar, R. (1992). Neural networks and the bias/variance dilemma. Neural Computation, 4(1):1-58.
    • (1992) Neural Computation , vol.4 , Issue.1 , pp. 1-58
    • Geman, S.1    Bienenstock, E.2    Doursar, R.3
  • 92
    • 0021518209 scopus 로고
    • Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images
    • Geman, S. and Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6(6):721-741.
    • (1984) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.6 , Issue.6 , pp. 721-741
    • Geman, S.1    Geman, D.2
  • 93
    • 0025507332 scopus 로고
    • On the decision regions of multilayer perceptrons
    • Gibson, G. J. and Cowan, C. F. N. (1990). On the decision regions of multilayer perceptrons. Proceedings of the IEEE, 78(10):1590-1594.
    • (1990) Proceedings of the IEEE , vol.78 , Issue.10 , pp. 1590-1594
    • Gibson, G.J.1    Cowan, C.F.N.2
  • 94
    • 0004063539 scopus 로고
    • Priors, stabilizers and basis functions: from regularization to radial, tensor and additive splines
    • A. I. Memo No. 1430 C.B.C.L. Paper No. 75, Massachusetts Institute of Technology
    • Girosi, F., Jones, M., and Poggio, T. (1993). Priors, stabilizers and basis functions: from regularization to radial, tensor and additive splines. A. I. Memo No. 1430 C.B.C.L. Paper No. 75, Massachusetts Institute of Technology.
    • (1993)
    • Girosi, F.1    Jones, M.2    Poggio, T.3
  • 95
    • 0025671510 scopus 로고
    • A probabilistic approach to the understanding and training of neural network classifiers
    • IEEE International Conference on Acoustics, Speech and Signal Processing
    • Gish, H. (1990). A probabilistic approach to the understanding and training of neural network classifiers. In IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 1361-1364.
    • (1990) , pp. 1361-1364
    • Gish, H.1
  • 96
    • 0004236492 scopus 로고
    • Matrix Computations
    • Johns Hopkins University Press, Baltimore
    • Golub, G. H. and van Loan, C. F. (1982). Matrix Computations. Johns Hopkins University Press, Baltimore.
    • (1982)
    • Golub, G.H.1    Van Loan, C.F.2
  • 97
    • 0012096207 scopus 로고
    • Note on iterative refinement of least squares solution
    • Golub, G. H. and Wilkinson, J. H. (1966). Note on iterative refinement of least squares solution. Numer. Math, 9:139-148.
    • (1966) Numer. Math , vol.9 , pp. 139-148
    • Golub, G.H.1    Wilkinson, J.H.2
  • 98
    • 0026706096 scopus 로고
    • Neural networks and olive oil
    • Goodacre, R., Kell, D. B., and Bianchi, G. (1992). Neural networks and olive oil. Nature, 359:594.
    • (1992) Nature , vol.359 , pp. 594
    • Goodacre, R.1    Kell, D.B.2    Bianchi, G.3
  • 99
    • 0002240542 scopus 로고
    • M-estimators of location: An outline of the theory
    • Hoaglin, D. C., Mosteller, F., and Tukey, J. W., editors, Understand Robust and Exploratory Data Analysis, Wiley, New York
    • Goodall, C. (1983). M-estimators of location: An outline of the theory. In Hoaglin, D. C., Mosteller, F., and Tukey, J. W., editors, Understand Robust and Exploratory Data Analysis, pp. 339-403. Wiley, New York.
    • (1983) , pp. 339-403
    • Goodall, C.1
  • 100
    • 0023843391 scopus 로고
    • Analysis of hidden units in a layered network trained to classify sonar targets
    • Gorman, R. and Sejnowski, T. (1988). Analysis of hidden units in a layered network trained to classify sonar targets. Neural Networks, 1:75-89.
    • (1988) Neural Networks , vol.1 , pp. 75-89
    • Gorman, R.1    Sejnowski, T.2
  • 101
    • 0031214394 scopus 로고    scopus 로고
    • Regularization with a pruning prior
    • Goutte, C. and Hansen, L. K. (1997). Regularization with a pruning prior. Neural Networks, 10(6):1053-1059.
    • (1997) Neural Networks , vol.10 , Issue.6 , pp. 1053-1059
    • Goutte, C.1    Hansen, L.K.2
  • 102
    • 0004207439 scopus 로고
    • Measure Theory
    • Springer-Verlag, New York
    • Halmos, P. R. (1974). Measure Theory. Springer-Verlag, New York.
    • (1974)
    • Halmos, P.R.1
  • 104
  • 105
    • 0022060167 scopus 로고
    • The breakdown points of the mean combined with some rejection rules
    • Hampel, F. R. (1985). The breakdown points of the mean combined with some rejection rules. Technometrics, 27(2):95-107.
    • (1985) Technometrics , vol.27 , Issue.2 , pp. 95-107
    • Hampel, F.R.1
  • 106
    • 0003841907 scopus 로고
    • Robust Statistics: The Approach Based on Influence Functions
    • Wiley, New York
    • Hampel, F. R., Ronchetti, E. M., Rousseeuw, P. J., and Stahel, W. A. (1986). Robust Statistics: The Approach Based on Influence Functions. Wiley, New York.
    • (1986)
    • Hampel, F.R.1    Ronchetti, E.M.2    Rousseeuw, P.J.3    Stahel, W.A.4
  • 107
    • 0001770345 scopus 로고
    • Equivalence proofs for multilayer perceptron classifiers and the Bayesian discriminant function
    • Touretzky, D., Elman, A., Sejnowski, T., and Hinton, G., editors, Proceedings of the 1990 Connectionist Models Summer School, San Mateo, CA. Morgan Kaufmann
    • Hampshire, II, J. B. and Perlmutter, B. A. (1990). Equivalence proofs for multilayer perceptron classifiers and the Bayesian discriminant function. In Touretzky, D., Elman, A., Sejnowski, T., and Hinton, G., editors, Proceedings of the 1990 Connectionist Models Summer School, San Mateo, CA. Morgan Kaufmann.
    • (1990)
    • Hampshire II, J.B.1    Perlmutter, B.A.2
  • 108
    • 0003495267 scopus 로고    scopus 로고
    • Construction and Assessment of Classification Rules
    • Wiley, Chichester
    • Hand, D. J. (1997). Construction and Assessment of Classification Rules. Wiley, Chichester.
    • (1997)
    • Hand, D.J.1
  • 109
    • 33745886270 scopus 로고    scopus 로고
    • Classifier technology and the illusion of progress
    • with discussion
    • Hand, D. J. (2006). Classifier technology and the illusion of progress. Statistical Science, 21(1):1-14. with discussion.
    • (2006) Statistical Science , vol.21 , Issue.1 , pp. 1-14
    • Hand, D.J.1
  • 110
    • 0001234705 scopus 로고
    • Second order derivatives for network pruning: Optimal brain surgeon
    • Lippmann et al. (1991)
    • Hassibi, B. and Stork, D. G. (1991). Second order derivatives for network pruning: Optimal brain surgeon. In Lippmann et al. (1991), pp. 164-171.
    • (1991) , pp. 164-171
    • Hassibi, B.1    Stork, D.G.2
  • 111
    • 84889396797 scopus 로고
    • Nonparametric discriminant analysis
    • Unpublished lecture notes, AT&T Bell Laboratories
    • Hastie, T. (1994). Nonparametric discriminant analysis. Unpublished lecture notes, AT&T Bell Laboratories.
    • (1994)
    • Hastie, T.1
  • 115
    • 0003316589 scopus 로고    scopus 로고
    • Flexible discriminant and mixture models
    • Kay, J. and Titterington, D. M., editors, Statistics and Neural Networks: Recent Advances at the Interface. Oxford University Press
    • Hastie, T., Tibshirani, R., and Buja, A. (1999). Flexible discriminant and mixture models. In Kay, J. and Titterington, D. M., editors, Statistics and Neural Networks: Recent Advances at the Interface. Oxford University Press.
    • (1999)
    • Hastie, T.1    Tibshirani, R.2    Buja, A.3
  • 116
    • 0003684449 scopus 로고    scopus 로고
    • The Elements of Statistical Learning: Data Mining, Inference and Prediction
    • Springer
    • Hastie, T., Tibshirani, R., and Friedman, J. (2001). The Elements of Statistical Learning: Data Mining, Inference and Prediction. Springer.
    • (2001)
    • Hastie, T.1    Tibshirani, R.2    Friedman, J.3
  • 117
    • 57049096099 scopus 로고    scopus 로고
    • mda: Mixture and flexible discriminant analysis
    • S original by Trevor Hastie and Robert Tibshirani. R port by Friedrich Leisch and Kurt Hornik and Brian D. Ripley. R package version 0.3-2
    • Hastie, T., Tibshirani, R., Leisch, F., Hornik, K., and Ripley, B. D. (2006). mda: Mixture and flexible discriminant analysis. S original by Trevor Hastie and Robert Tibshirani. R port by Friedrich Leisch and Kurt Hornik and Brian D. Ripley. R package version 0.3-2.
    • (2006)
    • Hastie, T.1    Tibshirani, R.2    Leisch, F.3    Hornik, K.4    Ripley, B.D.5
  • 118
    • 43149089426 scopus 로고
    • Generalized linear models
    • Chambers, J. M. and Hastie, T. J., editors, Statistical Models in S, chapter 9. Wadsworth and Brooks, Pacific Grove, CA
    • Hastie, T. J. and Pregibon, D. (1992). Generalized linear models. In Chambers, J. M. and Hastie, T. J., editors, Statistical Models in S, chapter 9. Wadsworth and Brooks, Pacific Grove, CA.
    • (1992)
    • Hastie, T.J.1    Pregibon, D.2
  • 119
    • 0003413187 scopus 로고    scopus 로고
    • Neural Networks. A Comprehensive Foundation
    • Prentice-Hall, Engelwood Cliffs, NJ
    • Haykin, S. (1999). Neural Networks. A Comprehensive Foundation. Prentice-Hall, Engelwood Cliffs, NJ.
    • (1999)
    • Haykin, S.1
  • 120
    • 0004230131 scopus 로고
    • The Organization of Behavior
    • Wiley, New York
    • Hebb, D. O. (1949). The Organization of Behavior. Wiley, New York.
    • (1949)
    • Hebb, D.O.1
  • 122
    • 4243298655 scopus 로고
    • Introducing efficient second order effects into back propagation learning
    • International Joint Conference on Neural Networks, Hillsdale, NJ. Lawrence Erlbaum
    • Himmelblau, D. M. (1990). Introducing efficient second order effects into back propagation learning. In International Joint Conference on Neural Networks, volume 1, pp. 631-634, Hillsdale, NJ. Lawrence Erlbaum.
    • (1990) , vol.1 , pp. 631-634
    • Himmelblau, D.M.1
  • 123
    • 0002123777 scopus 로고
    • An introduction to robust estimation
    • Launer, R. L. and Wilkinson, G. N., editors, Robustness In Statistics. Academic Press, Boston
    • Hogg, R. V. (1979). An introduction to robust estimation. In Launer, R. L. and Wilkinson, G. N., editors, Robustness In Statistics. Academic Press, Boston.
    • (1979)
    • Hogg, R.V.1
  • 124
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornik, K., Sinchcombe, M., and White, H. (1989). Multilayer feedforward networks are universal approximators. Neural Networks, 2(5):359-365.
    • (1989) Neural Networks , vol.2 , Issue.5 , pp. 359-365
    • Hornik, K.1    Sinchcombe, M.2    White, H.3
  • 125
    • 0004262735 scopus 로고
    • Robust Statistics
    • Wiley, New York
    • Huber, P. J. (1981). Robust Statistics. Wiley, New York.
    • (1981)
    • Huber, P.J.1
  • 126
    • 0000263797 scopus 로고
    • Projection pursuit
    • Huber, P. J. (1985). Projection pursuit. Annals of Statistics, 13(2):435-475.
    • (1985) Annals of Statistics , vol.13 , Issue.2 , pp. 435-475
    • Huber, P.J.1
  • 127
    • 84889379455 scopus 로고
    • A generalization method for back-propagation using fuzzy sets
    • Proceedings of the Third Australian Conference on Neural Networks, Sydney University Electrical Engineering Department
    • Hunt, B., Qi, Y., and DeKruger, D. (1992). A generalization method for back-propagation using fuzzy sets. In Proceedings of the Third Australian Conference on Neural Networks, pp. 12-16. Sydney University Electrical Engineering Department.
    • (1992) , pp. 12-16
    • Hunt, B.1    Qi, Y.2    DeKruger, D.3
  • 128
    • 23844478259 scopus 로고    scopus 로고
    • Neural network modeling for small datasets
    • Ingrassia, S. and Morlini, I. (2005). Neural network modeling for small datasets. Technometrics, 47(3):297-311.
    • (2005) Technometrics , vol.47 , Issue.3 , pp. 297-311
    • Ingrassia, S.1    Morlini, I.2
  • 129
    • 0141700326 scopus 로고
    • Optimization schemes for neural networks
    • Technical Report CUED/F-INFENG/TR 114, Cambridge University, Electrical Engineering Department
    • Jervis, T. T. and Fitzgerald, W. J. (1993). Optimization schemes for neural networks. Technical Report CUED/F-INFENG/TR 114, Cambridge University, Electrical Engineering Department.
    • (1993)
    • Jervis, T.T.1    Fitzgerald, W.J.2
  • 130
    • 0003841602 scopus 로고
    • Why the logistic function? A tutorial on probabilities and neural networks
    • Computational Cognitive Science Technical Report 9603, Massachusetts Institute of Technology
    • Jordan, M. I. (1995). Why the logistic function? A tutorial on probabilities and neural networks. Computational Cognitive Science Technical Report 9603, Massachusetts Institute of Technology.
    • (1995)
    • Jordan, M.I.1
  • 131
    • 12144285657 scopus 로고    scopus 로고
    • Robust formulations for training multilayer perceptrons
    • Karkkainen, T. and Heikkola, E. (2004). Robust formulations for training multilayer perceptrons. Neural Computation, 16:837-862.
    • (2004) Neural Computation , vol.16 , pp. 837-862
    • Karkkainen, T.1    Heikkola, E.2
  • 132
    • 0005635893 scopus 로고
    • Canonical variate analysis of high-dimensional spectral data
    • Kiiveri, H. T. (1992). Canonical variate analysis of high-dimensional spectral data. Technometrics, 34(3):321-331.
    • (1992) Technometrics , vol.34 , Issue.3 , pp. 321-331
    • Kiiveri, H.T.1
  • 133
    • 0004936284 scopus 로고    scopus 로고
    • Some statistical models for remotely sensed data
    • Unpublished report, CSIRO, Floreat Park, Western Australia
    • Kiiveri, H. T. and Caccetta, P. (1996). Some statistical models for remotely sensed data. Unpublished report, CSIRO, Floreat Park, Western Australia.
    • (1996)
    • Kiiveri, H.T.1    Caccetta, P.2
  • 134
    • 84985598202 scopus 로고
    • Allocation of remotely sensed data using Markov models for image data and pixel labels
    • Kiiveri, H. T. and Campbell, N. A. (1992). Allocation of remotely sensed data using Markov models for image data and pixel labels. Australian Journal of Statistics, 34(3):361-374.
    • (1992) Australian Journal of Statistics , vol.34 , Issue.3 , pp. 361-374
    • Kiiveri, H.T.1    Campbell, N.A.2
  • 135
    • 8444238211 scopus 로고
    • Single layer learning revisited: A stepwise procedure for building and training a neural network
    • Fogelman-Soulie, F. and Herault, J., editors, Neurocomputing: Algorithms, Architectures, and Applications, volume F 68. NATO ASI Series, Springer-Verlag, Berlin
    • Knerr, S., Personnaz, L., and Dreyfus, G. (1990). Single layer learning revisited: A stepwise procedure for building and training a neural network. In Fogelman-Soulie, F. and Herault, J., editors, Neurocomputing: Algorithms, Architectures, and Applications, volume F 68. NATO ASI Series, Springer-Verlag, Berlin.
    • (1990)
    • Knerr, S.1    Personnaz, L.2    Dreyfus, G.3
  • 136
    • 0026955102 scopus 로고
    • Handwritten digit recognition by neural networks with single-layer training
    • Knerr, S., Personnaz, L., and Dreyfus, G. (1992). Handwritten digit recognition by neural networks with single-layer training. IEEE Transactions on Neural Networks, 3(6):962-968.
    • (1992) IEEE Transactions on Neural Networks , vol.3 , Issue.6 , pp. 962-968
    • Knerr, S.1    Personnaz, L.2    Dreyfus, G.3
  • 137
    • 0002538983 scopus 로고    scopus 로고
    • Assessing error rate estimators: the leave-one-out method reconsidered
    • Krzanowski, W. J. and Hand, D. J. (1997). Assessing error rate estimators: the leave-one-out method reconsidered. Australian Journal of Statistics, 39:35-46.
    • (1997) Australian Journal of Statistics , vol.39 , pp. 35-46
    • Krzanowski, W.J.1    Hand, D.J.2
  • 138
    • 0004070115 scopus 로고
    • Multivariate Analysis Part 2: Classification, Covariance Structures and Repeated Measurements
    • Edward Arnold, London
    • Krzanowski, W. J. and Marriott, F. H. C. (1994). Multivariate Analysis Part 2: Classification, Covariance Structures and Repeated Measurements. Edward Arnold, London.
    • (1994)
    • Krzanowski, W.J.1    Marriott, F.H.C.2
  • 139
    • 0000494466 scopus 로고
    • Optimal brain damage
    • Touretzky (1990)
    • Le Cun, Y., Denker, J. S., and Solla, S. A. (1990). Optimal brain damage. In Touretzky (1990), pp. 598-605.
    • (1990) , pp. 598-605
    • Le Cun, Y.1    Denker, J.S.2    Solla, S.A.3
  • 140
    • 0008417713 scopus 로고
    • Practical characteristics of neural network and conventional classifiers on artificial speech problems
    • Touretzky (1990)
    • Lee, Y. and Lippmann, R. P. (1990). Practical characteristics of neural network and conventional classifiers on artificial speech problems. In Touretzky (1990), pp. 168-177.
    • (1990) , pp. 168-177
    • Lee, Y.1    Lippmann, R.P.2
  • 141
    • 0003925907 scopus 로고
    • Markov Random Field Modeling in Computer Vision
    • Springer-Verlag, New York
    • Li, S. Z. (1995). Markov Random Field Modeling in Computer Vision. Springer-Verlag, New York.
    • (1995)
    • Li, S.Z.1
  • 142
    • 0029777584 scopus 로고    scopus 로고
    • Robust error measure for supervised neural network learning with outliers
    • Liano, K. (1996). Robust error measure for supervised neural network learning with outliers. IEEE Transactions on Neural Networks, 7(1):246-250.
    • (1996) IEEE Transactions on Neural Networks , vol.7 , Issue.1 , pp. 246-250
    • Liano, K.1
  • 145
    • 1842676969 scopus 로고
    • Advances in Neural Information Processing Systems 3
    • Proceedings of the 1990 Conference. Morgan Kaufmann, San Mateo, CA
    • Lippmann, R. P., Moody, J. E., and Touretzky, D. S., editors (1991). Advances in Neural Information Processing Systems 3. Proceedings of the 1990 Conference. Morgan Kaufmann, San Mateo, CA.
    • (1991)
    • Lippmann, R.P.1    Moody, J.E.2    Touretzky, D.S.3
  • 146
    • 84889301337 scopus 로고
    • Robust parameter estimation and model selection for neural network regression
    • Cowan, J. D., Tesauro, G., and Alspector, J., editors, Advances in Neural Information Processing Systems 6. Proceedings of the 1993 Conference, San Francisco. Morgan Kaufmann
    • Liu, Y. (1994). Robust parameter estimation and model selection for neural network regression. In Cowan, J. D., Tesauro, G., and Alspector, J., editors, Advances in Neural Information Processing Systems 6. Proceedings of the 1993 Conference, pp. 192-199, San Francisco. Morgan Kaufmann.
    • (1994) , pp. 192-199
    • Liu, Y.1
  • 147
    • 84889281635 scopus 로고
    • Analysis of decision contour of neural network with sigmoid nonlinearity
    • International Joint Conference on Neural Networks, Hillsdale, NJ. Lawrence Erlbaum
    • Lui, H. C. (1990). Analysis of decision contour of neural network with sigmoid nonlinearity. In International Joint Conference on Neural Networks, volume 1, pp. 655-659, Hillsdale, NJ. Lawrence Erlbaum.
    • (1990) , vol.1 , pp. 655-659
    • Lui, H.C.1
  • 148
    • 84889268782 scopus 로고
    • A study of rock crabs of the genus Leptographus Milne Edwards
    • PhD thesis, Department of Zoology, University of Western Australia
    • Mahon, R. (1974). A study of rock crabs of the genus Leptographus Milne Edwards. PhD thesis, Department of Zoology, University of Western Australia.
    • (1974)
    • Mahon, R.1
  • 149
    • 0003607151 scopus 로고
    • Multivariate Analysis
    • Academic Press, New York
    • Mardia, F., Kent, T., and Bibby, J. (1979). Multivariate Analysis. Academic Press, New York.
    • (1979)
    • Mardia, F.1    Kent, T.2    Bibby, J.3
  • 150
    • 84944477553 scopus 로고
    • Generalized inverses, ridge regression, biased linear estimation, and non-linear estimation
    • Marquardt, D. W. (1970). Generalized inverses, ridge regression, biased linear estimation, and non-linear estimation. Technometrics, 12(3):591-612.
    • (1970) Technometrics , vol.12 , Issue.3 , pp. 591-612
    • Marquardt, D.W.1
  • 151
    • 0033079479 scopus 로고    scopus 로고
    • Generalized linear regression on sampled signals and curves: a p-spline approach
    • Marx, B. D. and Eilers, P. H. C. (1999). Generalized linear regression on sampled signals and curves: a p-spline approach. Technometrics, 41(1):1-13.
    • (1999) Technometrics , vol.41 , Issue.1 , pp. 1-13
    • Marx, B.D.1    Eilers, P.H.C.2
  • 152
    • 84898986200 scopus 로고    scopus 로고
    • Ordered classes and incomplete examples in classification
    • Mozer, M. C., M. I, J., and Petsche, T., editors, Advances in Neural Information Processing Systems, MIT Press, Cambridge, MA
    • Mathieson, M. (1997). Ordered classes and incomplete examples in classification. In Mozer, M. C., M. I, J., and Petsche, T., editors, Advances in Neural Information Processing Systems, volume 9. MIT Press, Cambridge, MA.
    • (1997) , vol.9
    • Mathieson, M.1
  • 153
    • 0003663926 scopus 로고
    • Generalized Linear Models
    • Chapman and Hall, London
    • McCullagh, P. and Nelder, J. A. (1989). Generalized Linear Models. Chapman and Hall, London.
    • (1989)
    • McCullagh, P.1    Nelder, J.A.2
  • 154
    • 51249194645 scopus 로고
    • A logical calculus of ideas immanent in nervous activity
    • Reprinted in Anderson and Rosenfeld (1988)
    • McCulloch, W. S. and Pitts, W. (1943). A logical calculus of ideas immanent in nervous activity. Bulletin of Mathematical Biophysics, 5:115-133. Reprinted in Anderson and Rosenfeld (1988).
    • (1943) Bulletin of Mathematical Biophysics , vol.5 , pp. 115-133
    • McCulloch, W.S.1    Pitts, W.2
  • 155
    • 0004027527 scopus 로고
    • Discriminant Analysis and Statistical Pattern Recognition
    • Wiley, New York
    • McLachlan, G. J. (1992). Discriminant Analysis and Statistical Pattern Recognition. Wiley, New York.
    • (1992)
    • McLachlan, G.J.1
  • 156
    • 0027842558 scopus 로고
    • Consistency of multilayer preceptron regression estimators
    • Mielniczuk, J. and Tyrcha, J. (1993). Consistency of multilayer preceptron regression estimators. Neural Networks, 6:1019-1022.
    • (1993) Neural Networks , vol.6 , pp. 1019-1022
    • Mielniczuk, J.1    Tyrcha, J.2
  • 157
    • 0004290881 scopus 로고
    • Perceptrons
    • Minsky and Papert, MIT Press, Cambridge, MA
    • Minsky and Papert (1969). Perceptrons. MIT Press, Cambridge, MA.
    • (1969)
  • 158
    • 0003612091 scopus 로고
    • Machine Learning, Neural and Statistical Classification
    • Ellis Horwood. The book is now out of print and has been made available at
    • Mitchie, D., Spiegelhalter, D. J., and Taylor, C. C. (1994). Machine Learning, Neural and Statistical Classification. Ellis Horwood. The book is now out of print and has been made available at http://www.amsta.leeds.ac.uk/~charles/statlog.
    • (1994)
    • Mitchie, D.1    Spiegelhalter, D.J.2    Taylor, C.C.3
  • 159
    • 0027205884 scopus 로고
    • A scaled conjugate gradient algorithm for fast supervised learning
    • Moller, M. F. (1993). A scaled conjugate gradient algorithm for fast supervised learning. Neural Networks, 6:525-533.
    • (1993) Neural Networks , vol.6 , pp. 525-533
    • Moller, M.F.1
  • 160
    • 0002787457 scopus 로고
    • Architecture selection strategies for neural networks: application to corporate bond rating prediction
    • Refenes, A.-P., editor, Neural Networks in the Capital Markets, Chichester. Wiley
    • Moody, J. and Utans, J. (1995). Architecture selection strategies for neural networks: application to corporate bond rating prediction. In Refenes, A.-P., editor, Neural Networks in the Capital Markets, pp. 277-300, Chichester. Wiley.
    • (1995) , pp. 277-300
    • Moody, J.1    Utans, J.2
  • 161
    • 0000902690 scopus 로고
    • The effective number of parameters: An analysis of generalization and regularization in nonlinear learning systems
    • Moody, J. E., Hanson, S. J., and Lippmann, R. P., editors, Advances in Neural Information Processing Systems J,. Proceedings of the 1991 Conference. Morgan Kaufmann, San Mateo, CA
    • Moody, J. E. (1992). The effective number of parameters: An analysis of generalization and regularization in nonlinear learning systems. In Moody, J. E., Hanson, S. J., and Lippmann, R. P., editors, Advances in Neural Information Processing Systems J,. Proceedings of the 1991 Conference. Morgan Kaufmann, San Mateo, CA.
    • (1992)
    • Moody, J.E.1
  • 163
    • 0002595536 scopus 로고
    • Generalization and parameter estimation in feedforward nets: some experiments
    • Lippmann et al. (1991)
    • Morgan, N. and Bourland, H. (1991). Generalization and parameter estimation in feedforward nets: some experiments. In Lippmann et al. (1991), pp. 630-637.
    • (1991) , pp. 630-637
    • Morgan, N.1    Bourland, H.2
  • 164
    • 84889324668 scopus 로고
    • Error functions to improve noise resistance and generalization in backpropagation networks
    • International Joint Conference on Neural Networks, Hillsdale, NJ. Lawrence Erlbaum
    • Movellan, J. R. (1990). Error functions to improve noise resistance and generalization in backpropagation networks. In International Joint Conference on Neural Networks, volume 1, pp. 557-560, Hillsdale, NJ. Lawrence Erlbaum.
    • (1990) , vol.1 , pp. 557-560
    • Movellan, J.R.1
  • 165
    • 0343041788 scopus 로고
    • Skeletonization: A technique for trimming the fat from a network via relevance assessment
    • Touretzky (1989)
    • Mozer, M. C. and Smolensky, P. (1989). Skeletonization: A technique for trimming the fat from a network via relevance assessment. In Touretzky (1989), pp. 107-115.
    • (1989) , pp. 107-115
    • Mozer, M.C.1    Smolensky, P.2
  • 166
    • 0028544395 scopus 로고
    • Network information criterion- determining the number of hidden units for artificial neural network models
    • Murata, N., Yoshizawa, S., and Amari, S. (1994). Network information criterion- determining the number of hidden units for artificial neural network models. IEEE Transactions on Neural Networks, 5:865-872.
    • (1994) IEEE Transactions on Neural Networks , vol.5 , pp. 865-872
    • Murata, N.1    Yoshizawa, S.2    Amari, S.3
  • 167
    • 0003777691 scopus 로고
    • Compact Numerical Methods For Computers
    • Linear Algebra and Function Minimization. IOP Publishing, Bristol
    • Nash, J. (1990). Compact Numerical Methods For Computers. Linear Algebra and Function Minimization. IOP Publishing, Bristol.
    • (1990)
    • Nash, J.1
  • 168
    • 0003611509 scopus 로고
    • Bayesian Learning for Neural Networks
    • PhD thesis, Department of Computer Science, University of Toronto
    • Neal, R. M. (1995). Bayesian Learning for Neural Networks. PhD thesis, Department of Computer Science, University of Toronto.
    • (1995)
    • Neal, R.M.1
  • 169
    • 0000238336 scopus 로고
    • A simplex algorithm for function minimization
    • Nelder, J. A. and Mead, R. (1965). A simplex algorithm for function minimization. Computer Journal, 7:308-313.
    • (1965) Computer Journal , vol.7 , pp. 308-313
    • Nelder, J.A.1    Mead, R.2
  • 170
    • 0003960319 scopus 로고
    • Applied Linear Algebra
    • Prentice-Hall International, Englewood Cliffs, NJ
    • Noble, B. and Daniel, J. W. (1988). Applied Linear Algebra. Prentice-Hall International, Englewood Cliffs, NJ.
    • (1988)
    • Noble, B.1    Daniel, J.W.2
  • 171
    • 0001765492 scopus 로고
    • Simplifying neural networks by soft weight-sharing
    • Nowlan, S. J. and Hinton, G. E. (1992). Simplifying neural networks by soft weight-sharing. Neural Computation, 4:473-493.
    • (1992) Neural Computation , vol.4 , pp. 473-493
    • Nowlan, S.J.1    Hinton, G.E.2
  • 172
    • 0000846686 scopus 로고
    • Algorithm AS 47 - function minimization using a simplex procedure
    • O'Neill, R. (1971). Algorithm AS 47 - function minimization using a simplex procedure. Applied Statistics, 20:338-345.
    • (1971) Applied Statistics , vol.20 , pp. 338-345
    • O'Neill, R.1
  • 173
    • 4344637353 scopus 로고    scopus 로고
    • Knot selection for regression splines via the lasso
    • Weisberg, S., editor, Dimension Reduction, Computational Complexity, and Information, volume 30 of Computing Science and Statistics, Interface Foundation of North America, Fairfax Station
    • Osborne, M., Presnell, B., and Turlach, B. (1998). Knot selection for regression splines via the lasso. In Weisberg, S., editor, Dimension Reduction, Computational Complexity, and Information, volume 30 of Computing Science and Statistics, Interface Foundation of North America, pp. 44-49. Fairfax Station.
    • (1998) , pp. 44-49
    • Osborne, M.1    Presnell, B.2    Turlach, B.3
  • 174
    • 0003411478 scopus 로고
    • Adaptive Pattern Recognition and Neural Networks
    • Addison-Wesley, Reading, MA
    • Pao, Y. (1989). Adaptive Pattern Recognition and Neural Networks. Addison-Wesley, Reading, MA.
    • (1989)
    • Pao, Y.1
  • 175
    • 0029415649 scopus 로고
    • A review and analysis of backpropaga-tion neural networks for classification of remotely-sensed multi-spectral imagery
    • Paola, J. D. and Schowergerdt, R. A. (1995). A review and analysis of backpropaga-tion neural networks for classification of remotely-sensed multi-spectral imagery. International Journal of Remote Sensing, 16(16):3033-3058.
    • (1995) International Journal of Remote Sensing , vol.16 , Issue.16 , pp. 3033-3058
    • Paola, J.D.1    Schowergerdt, R.A.2
  • 177
    • 0024732248 scopus 로고
    • The early use of matrix diagonal increments in statistical problems
    • Piegorsch, W. W. and Casella, G. (1989). The early use of matrix diagonal increments in statistical problems. SIAM Review, 31(3):428-434.
    • (1989) SIAM Review , vol.31 , Issue.3 , pp. 428-434
    • Piegorsch, W.W.1    Casella, G.2
  • 178
    • 0004294776 scopus 로고
    • Experiments on learning by backpropagation
    • Tech. Rep. CMU-CS-86-126, Carnegie Mellon University, Pittsburg
    • Plaut, D. C, Nowlan, S. J., and Hinton, G. E. (1986). Experiments on learning by backpropagation. Tech. Rep. CMU-CS-86-126, Carnegie Mellon University, Pittsburg.
    • (1986)
    • Plaut, D.C.1    Nowlan, S.J.2    Hinton, G.E.3
  • 179
    • 0025490985 scopus 로고
    • Networks for approximation and learning
    • Poggio, T. and Girosi, F. (1990a). Networks for approximation and learning. Proceedings of the IEEE, 78(9):1481-1497.
    • (1990) Proceedings of the IEEE , vol.78 , Issue.9 , pp. 1481-1497
    • Poggio, T.1    Girosi, F.2
  • 180
    • 0025056697 scopus 로고
    • Regularization algorithms for learning that are equivalent to multilayer networks
    • Poggio, T. and Girosi, F. (1990b). Regularization algorithms for learning that are equivalent to multilayer networks. Science, 247:978-982.
    • (1990) Science , vol.247 , pp. 978-982
    • Poggio, T.1    Girosi, F.2
  • 181
    • 0003555845 scopus 로고
    • Computational Methods in Optimization
    • Academic Press, New York
    • Polak, E. (1971). Computational Methods in Optimization. Academic Press, New York.
    • (1971)
    • Polak, E.1
  • 182
    • 0020148757 scopus 로고
    • Resistant fits for some commonly used logistic models with medical aplications
    • Pregibon, D. (1982). Resistant fits for some commonly used logistic models with medical aplications. Biometrics, 38:485-498.
    • (1982) Biometrics , vol.38 , pp. 485-498
    • Pregibon, D.1
  • 183
    • 0003474751 scopus 로고
    • Numerical Recipes in C
    • Cambridge University Press, Cambridge, second edition
    • Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T. (1992). Numerical Recipes in C. Cambridge University Press, Cambridge, second edition.
    • (1992)
    • Press, W.H.1    Flannery, B.P.2    Teukolsky, S.A.3    Vetterling, W.T.4
  • 184
    • 84863304598 scopus 로고    scopus 로고
    • R: A Language and Environment for Statistical Computing
    • R Development Core Team, R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0
    • R Development Core Team (2006). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0.
    • (2006)
  • 185
    • 0004130505 scopus 로고    scopus 로고
    • Functional Data Analysis
    • Springer-Verlag, New York
    • Ramsay, J. O. and Silverman, W. B. (1997). Functional Data Analysis. Springer-Verlag, New York.
    • (1997)
    • Ramsay, J.O.1    Silverman, W.B.2
  • 186
    • 84889328822 scopus 로고    scopus 로고
    • S-PLUS Functions for FDA
    • Manual accompanying FDA software
    • Ramsay, J. O. and Silverman, W. B. (1999). S-PLUS Functions for FDA. Manual accompanying FDA software.
    • (1999)
    • Ramsay, J.O.1    Silverman, W.B.2
  • 187
    • 0001565436 scopus 로고
    • The utilization of multiple measurements in problems of biological classification (with discussion)
    • Rao, C. R. (1948). The utilization of multiple measurements in problems of biological classification (with discussion). Journal of the Royal Statistical Society B, 10:159-203.
    • (1948) Journal of the Royal Statistical Society B , vol.10 , pp. 159-203
    • Rao, C.R.1
  • 188
    • 0003436776 scopus 로고
    • Linear Statistical Inference and Its Applications
    • Wiley, New York, second edition
    • Rao, C. R. (1973). Linear Statistical Inference and Its Applications. Wiley, New York, second edition.
    • (1973)
    • Rao, C.R.1
  • 189
  • 190
    • 0029306953 scopus 로고
    • Similarities of error regularization, sigmoid gain scaling, target smoothing, and training with jitter
    • Reed, R., Marks II, R. J., and Oh, S. (1995). Similarities of error regularization, sigmoid gain scaling, target smoothing, and training with jitter. IEEE Transactions on Neural Networks, 6(3):529-538.
    • (1995) IEEE Transactions on Neural Networks , vol.6 , Issue.3 , pp. 529-538
    • Reed, R.1    Marks II, R.J.2    Oh, S.3
  • 191
    • 34250516079 scopus 로고
    • Smoothing by spline functions
    • Reinsch, C. H. (1967). Smoothing by spline functions. Numerische Mathematik, 10:177-183.
    • (1967) Numerische Mathematik , vol.10 , pp. 177-183
    • Reinsch, C.H.1
  • 192
    • 0001597980 scopus 로고
    • Estimating the mean and covariance structure nonparametrically when the data are curves
    • Rice, J. A. and Silverman, B. W. (1991). Estimating the mean and covariance structure nonparametrically when the data are curves. Journal of the Royal Statistical Society B, 53(1):233-243.
    • (1991) Journal of the Royal Statistical Society B , vol.53 , Issue.1 , pp. 233-243
    • Rice, J.A.1    Silverman, B.W.2
  • 193
    • 0001595997 scopus 로고
    • Neural network classifiers estimate Bayesian a posteriori probabilities
    • Richard, M. D. and Lippmann, R. P. (1991). Neural network classifiers estimate Bayesian a posteriori probabilities. Neural Computation, 3:461-483.
    • (1991) Neural Computation , vol.3 , pp. 461-483
    • Richard, M.D.1    Lippmann, R.P.2
  • 194
    • 84892350125 scopus 로고
    • Remote Sensing Digital Image Analysis: An Introduction
    • Springer-Verlag, Berlin
    • Richards, J. A. (1986). Remote Sensing Digital Image Analysis: An Introduction. Springer-Verlag, Berlin.
    • (1986)
    • Richards, J.A.1
  • 195
    • 84930239955 scopus 로고    scopus 로고
    • Remote Sensing Digital Image Analysis: An Introduction
    • Springer, Berlin, 4th edition
    • Richards, J. A. and Jia, X. (2006). Remote Sensing Digital Image Analysis: An Introduction. Springer, Berlin, 4th edition.
    • (2006)
    • Richards, J.A.1    Jia, X.2
  • 196
    • 84963477530 scopus 로고
    • Statistics, images and pattern recognition (with discussion)
    • Ripley, B. D. (1986). Statistics, images and pattern recognition (with discussion). Canadian Journal of Statistics, 14:83-111.
    • (1986) Canadian Journal of Statistics , vol.14 , pp. 83-111
    • Ripley, B.D.1
  • 197
    • 0040314212 scopus 로고
    • Flexible non-linear approaches to classification
    • Cherkassky, V., Friedman, J. H., and Wechsler, H., editors, From Statistics to Neural Networks: Theory and Pattern Recognition, Berlin. ASI Proceedings, subseries F, Computer and Systems Sciences, Springer-Verlag
    • Ripley, B. D. (1994a). Flexible non-linear approaches to classification. In Cherkassky, V., Friedman, J. H., and Wechsler, H., editors, From Statistics to Neural Networks: Theory and Pattern Recognition, pp. 105-126, Berlin. ASI Proceedings, subseries F, Computer and Systems Sciences, Springer-Verlag.
    • (1994) , pp. 105-126
    • Ripley, B.D.1
  • 198
    • 84889399327 scopus 로고
    • multinom. Software for fitting multinomial models via an MLP
    • Available from statlib at
    • Ripley, B. D. (1994b). multinom. Software for fitting multinomial models via an MLP. Available from statlib at http://lib.stat.cmu.edu/.
    • (1994)
    • Ripley, B.D.1
  • 199
    • 0000696616 scopus 로고
    • Neural networks and related methods for classification (with discussion)
    • Ripley, B. D. (1994c). Neural networks and related methods for classification (with discussion). Journal of the Royal Statistical Society, B, 56:409-456.
    • (1994) Journal of the Royal Statistical Society, B , vol.56 , pp. 409-456
    • Ripley, B.D.1
  • 200
    • 0002319419 scopus 로고
    • Statistical ideas for selecting network architectures
    • Kap-pen, B. and Gielen, S., editors, Neural Networks: Artificial Intelligence and Industrial Applications, Springer, London
    • Ripley, B. D. (1995). Statistical ideas for selecting network architectures. In Kap-pen, B. and Gielen, S., editors, Neural Networks: Artificial Intelligence and Industrial Applications, pp. 183-190. Springer, London.
    • (1995) , pp. 183-190
    • Ripley, B.D.1
  • 201
    • 84953405534 scopus 로고    scopus 로고
    • Pattern Recognition and Neural Networks
    • Cambridge University Press, Cambridge
    • Ripley, B. D. (1996). Pattern Recognition and Neural Networks. Cambridge University Press, Cambridge.
    • (1996)
    • Ripley, B.D.1
  • 202
    • 0003952786 scopus 로고
    • Principles of Neurodynamics
    • Spartan Books, Washington, DC
    • Rosenblatt, F. (1962). Principles of Neurodynamics. Spartan Books, Washington, DC.
    • (1962)
    • Rosenblatt, F.1
  • 203
    • 0003681739 scopus 로고
    • Robust Regression and Outlier Detection
    • Wiley, New York
    • Rousseeuw, P. J. and Leroy, A. M. (1987). Robust Regression and Outlier Detection. Wiley, New York.
    • (1987)
    • Rousseeuw, P.J.1    Leroy, A.M.2
  • 205
    • 0003725380 scopus 로고
    • Functional Stability Analysis of Numerical Algorithms
    • PhD thesis, Department of Computer Sciences, University of Texas at Austin
    • Rowan, T. (1990). Functional Stability Analysis of Numerical Algorithms. PhD thesis, Department of Computer Sciences, University of Texas at Austin.
    • (1990)
    • Rowan, T.1
  • 206
    • 0040726774 scopus 로고    scopus 로고
    • Discriminative vs informative learning
    • available on
    • Rubenstein, D. and Hastie, T. (1997). Discriminative vs informative learning, available on http://www-stat.stanford.edu/~trevor/.
    • (1997)
    • Rubenstein, D.1    Hastie, T.2
  • 207
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • Reprinted in Anderson and Rosenfeld (1988)
    • Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning representations by back-propagating errors. Nature, 323:533-536. Reprinted in Anderson and Rosenfeld (1988).
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 208
    • 79959497053 scopus 로고
    • A fast learning algorithm for tree neural networks
    • Proceedings of the 1990 Conference on Information Sciences and Systems, Princeton, NJ
    • Sankar, A. and Mammone, R. J. (1990a). A fast learning algorithm for tree neural networks. In Proceedings of the 1990 Conference on Information Sciences and Systems, pp. 638-642, Princeton, NJ.
    • (1990) , pp. 638-642
    • Sankar, A.1    Mammone, R.J.2
  • 209
    • 84889330359 scopus 로고
    • Tree structured neural networks
    • Technical Report CAIP-TR-122, Center for Computer Aids for Industrial Productivity, Rutgers University
    • Sankar, A. and Mammone, R. J. (1990b). Tree structured neural networks. Technical Report CAIP-TR-122, Center for Computer Aids for Industrial Productivity, Rutgers University.
    • (1990)
    • Sankar, A.1    Mammone, R.J.2
  • 210
    • 0026736931 scopus 로고
    • Optimal pruning of neural tree networks for improved generalization
    • Proceedings of the International Joint Conference on Neural Networks, Seattle
    • Sankar, A. and Mammone, R. J. (1991a). Optimal pruning of neural tree networks for improved generalization. In Proceedings of the International Joint Conference on Neural Networks, Seattle, volume 2, pp. 219-224.
    • (1991) , vol.2 , pp. 219-224
    • Sankar, A.1    Mammone, R.J.2
  • 211
    • 0026626843 scopus 로고
    • Speaker independent vowel recognition using neural tree networks
    • Proceedings of the International Joint Conference on Neural Networks, Seattle
    • Sankar, A. and Mammone, R. J. (1991b). Speaker independent vowel recognition using neural tree networks. In Proceedings of the International Joint Conference on Neural Networks, Seattle, volume 2, pp. 809-814.
    • (1991) , vol.2 , pp. 809-814
    • Sankar, A.1    Mammone, R.J.2
  • 212
    • 0002997755 scopus 로고
    • Neural networks and statistical models
    • Proceedings of the Nineteenth Annual SAS Users Group International Conference
    • Sarle, W. S. (1994). Neural networks and statistical models. In Proceedings of the Nineteenth Annual SAS Users Group International Conference, pp. 1538-1550.
    • (1994) , pp. 1538-1550
    • Sarle, W.S.1
  • 213
    • 0003271452 scopus 로고
    • Stopped training and other remedies for overfitting
    • Proceedings of the 27th Symposium on the Interface
    • Sarle, W. S. (1995). Stopped training and other remedies for overfitting. In Proceedings of the 27th Symposium on the Interface, pp. 352-360.
    • (1995) , pp. 352-360
    • Sarle, W.S.1
  • 214
    • 84889433120 scopus 로고    scopus 로고
    • Faq2.html
    • The Frequently Asked Questions (FAQ) list for the comp.ai.neural-nets newsgroup, June
    • Sarle, W. S. (1996). Faq2.html. The Frequently Asked Questions (FAQ) list for the comp.ai.neural-nets newsgroup, June.
    • (1996)
    • Sarle, W.S.1
  • 215
    • 85156241149 scopus 로고    scopus 로고
    • Exploiting tractable substructures in intractable networks
    • Touretzky, D. S., Mozer, M. C, and Hasselmo, M. E., editors, Advances in Neural Information Processing Systems, Cambridge, MA. The MIT Press
    • Saul, L. K. and Jordan, M. I. (1996). Exploiting tractable substructures in intractable networks. In Touretzky, D. S., Mozer, M. C, and Hasselmo, M. E., editors, Advances in Neural Information Processing Systems, volume 8, pp. 486-492, Cambridge, MA. The MIT Press.
    • (1996) , vol.8 , pp. 486-492
    • Saul, L.K.1    Jordan, M.I.2
  • 216
    • 0345195977 scopus 로고    scopus 로고
    • Universal approximation using feedforward neural networks: a survey of some existing methods and some new results
    • Scarselli, F. and Tsoi, A. C. (1998). Universal approximation using feedforward neural networks: a survey of some existing methods and some new results. Neural Networks, 11(1):15-37.
    • (1998) Neural Networks , vol.11 , Issue.1 , pp. 15-37
    • Scarselli, F.1    Tsoi, A.C.2
  • 217
    • 0004275542 scopus 로고    scopus 로고
    • Remote Sensing
    • Academic Press, San Diego
    • Schowengerdt, R. A. (1997). Remote Sensing. Academic Press, San Diego.
    • (1997)
    • Schowengerdt, R.A.1
  • 218
    • 0003545910 scopus 로고
    • Multivariate Density Estimation
    • Wiley, New York
    • Scott, D. W. (1992). Multivariate Density Estimation. Wiley, New York.
    • (1992)
    • Scott, D.W.1
  • 219
    • 0003786984 scopus 로고
    • Complex Systems and Cognitive Processes
    • Springer Verlag, Berlin
    • Serra, R. and Zanarini, G. (1990). Complex Systems and Cognitive Processes. Springer Verlag, Berlin.
    • (1990)
    • Serra, R.1    Zanarini, G.2
  • 220
    • 0025508354 scopus 로고
    • Entropy nets: from decision trees to neural networks
    • Sethi, I. (1990). Entropy nets: from decision trees to neural networks. Proceedings of the IEEE, 78(10):1605-1613.
    • (1990) Proceedings of the IEEE , vol.78 , Issue.10 , pp. 1605-1613
    • Sethi, I.1
  • 221
    • 84976806770 scopus 로고
    • Remark on "Algorithm 500: Minimization of unconstrained multivariable functions"
    • Shanno, D. F. and Phua, K. H. (1980). Remark on "Algorithm 500: Minimization of unconstrained multivariable functions". ACM Transactions on Mathematical Software, 6:618-622.
    • (1980) ACM Transactions on Mathematical Software , vol.6 , pp. 618-622
    • Shanno, D.F.1    Phua, K.H.2
  • 222
    • 0003621102 scopus 로고
    • An introduction to the conjugate gradient method without the agonizing pain
    • Technical Report CMU-CS-94-125, Carnegie Mellon University, School of Computer Science
    • Shewchuk, J. R. (1994). An introduction to the conjugate gradient method without the agonizing pain. Technical Report CMU-CS-94-125, Carnegie Mellon University, School of Computer Science.
    • (1994)
    • Shewchuk, J.R.1
  • 223
    • 0026017007 scopus 로고
    • Creating artificial neural networks that generalize
    • Sietsma, J. and Dow, R. J. F. (1991). Creating artificial neural networks that generalize. Neural Networks, 4:67-79.
    • (1991) Neural Networks , vol.4 , pp. 67-79
    • Sietsma, J.1    Dow, R.J.F.2
  • 224
    • 84882420668 scopus 로고
    • Acceleration techniques for the backprop-agation algorithm
    • Almeida and Wellekens (1990)
    • Silva, F. M. and Almeida, L. B. (1990). Acceleration techniques for the backprop-agation algorithm. In Almeida and Wellekens (1990), pp. 110-119.
    • (1990) , pp. 110-119
    • Silva, F.M.1    Almeida, L.B.2
  • 225
    • 0003443397 scopus 로고
    • Density Estimation for Statistics and Data Analysis
    • Chapman &: Hall, London
    • Silverman, B. W. (1986). Density Estimation for Statistics and Data Analysis. Chapman &: Hall, London.
    • (1986)
    • Silverman, B.W.1
  • 226
    • 0003603088 scopus 로고
    • Statistical Inference
    • Chapman and Hall, London
    • Silvey, S. D. (1975). Statistical Inference. Chapman and Hall, London.
    • (1975)
    • Silvey, S.D.1
  • 227
    • 0028292832 scopus 로고
    • Minimization methods for training feedforward neural networks
    • Smagt, van der, P. P. (1994). Minimization methods for training feedforward neural networks. Neural Networks, 7(1):1-11.
    • (1994) Neural Networks , vol.7 , Issue.1 , pp. 1-11
    • Smagt, V.D.P.P.1
  • 228
    • 84889660302 scopus 로고
    • Splines: As a useful and convenient statistical tool
    • Smith, P. L. (1979). Splines: As a useful and convenient statistical tool. American Statistician, 33(2):57-62.
    • (1979) American Statistician , vol.33 , Issue.2 , pp. 57-62
    • Smith, P.L.1
  • 229
    • 0004069901 scopus 로고
    • Numerical taxonomy
    • Freeman, San Francisco
    • Sneath, P. H. A. and Sokal, R. R. (1973). Numerical taxonomy. Freeman, San Francisco.
    • (1973)
    • Sneath, P.H.A.1    Sokal, R.R.2
  • 230
    • 0025206332 scopus 로고
    • Probabilistic neural networks
    • Specht, D. F. (1990a). Probabilistic neural networks. Neural Networks, 3:109-118.
    • (1990) Neural Networks , vol.3 , pp. 109-118
    • Specht, D.F.1
  • 231
    • 0025399335 scopus 로고
    • Probabilistic neural networks and the polynomial adaline as complementary techniques for classification
    • Specht, D. F. (1990b). Probabilistic neural networks and the polynomial adaline as complementary techniques for classification. IEEE Transactions on Neural Networks, 1:111-121.
    • (1990) IEEE Transactions on Neural Networks , vol.1 , pp. 111-121
    • Specht, D.F.1
  • 233
    • 0003535938 scopus 로고
    • Robust Estimation and Testing
    • Wiley, New York
    • Staudte, R. G. and Sheather, S. J. (1990). Robust Estimation and Testing. Wiley, New York.
    • (1990)
    • Staudte, R.G.1    Sheather, S.J.2
  • 234
    • 84972517124 scopus 로고
    • Collinearity and least squares regression
    • Stewart, G. W. (1987). Collinearity and least squares regression. Statistical Science, 2:68-100.
    • (1987) Statistical Science , vol.2 , pp. 68-100
    • Stewart, G.W.1
  • 235
    • 0003449348 scopus 로고
    • Linear Algebra and its Applications
    • Harcourt Brace Jovanovich, San Diego, third edition
    • Strang, G. (1988). Linear Algebra and its Applications. Harcourt Brace Jovanovich, San Diego, third edition.
    • (1988)
    • Strang, G.1
  • 236
    • 21344498330 scopus 로고
    • Linear combinations of multiple diagnostic markers
    • Su, J. Q. and Liu, J. S. (1993). Linear combinations of multiple diagnostic markers. Journal of the American Statistical Association, 88(424):1350-1355.
    • (1993) Journal of the American Statistical Association , vol.88 , Issue.424 , pp. 1350-1355
    • Su, J.Q.1    Liu, J.S.2
  • 237
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the LASSO
    • Tibshirani, R. (1996). Regression shrinkage and selection via the LASSO. Journal of the Royal Statistical Society B, 58(1):267-288.
    • (1996) Journal of the Royal Statistical Society B , vol.58 , Issue.1 , pp. 267-288
    • Tibshirani, R.1
  • 239
    • 1842346154 scopus 로고
    • Proceedings of the 1988 Connectionist Models Summer School, Pittsberg
    • Morgan Kaufmann, San Mateo, CA
    • Touretzky, D., Hinton, G., and Sejnowski, T., editors (1988). Proceedings of the 1988 Connectionist Models Summer School, Pittsberg. Morgan Kaufmann, San Mateo, CA.
    • (1988)
    • Touretzky, D.1    Hinton, G.2    Sejnowski, T.3
  • 240
    • 0342571793 scopus 로고
    • Advances in Neural Information Processing Systems
    • Proceedings of the 1988 Conference. Morgan Kaufmann, San Mateo, CA
    • Touretzky, D. S., editor (1989). Advances in Neural Information Processing Systems. Proceedings of the 1988 Conference. Morgan Kaufmann, San Mateo, CA.
    • (1989)
    • Touretzky, D.S.1
  • 241
    • 0008458860 scopus 로고
    • Advances in Neural Information Processing Systems 2
    • Proceedings of the 1989 Conference. Morgan Kaufmann, San Mateo, CA
    • Touretzky, D. S., editor (1990). Advances in Neural Information Processing Systems 2. Proceedings of the 1989 Conference. Morgan Kaufmann, San Mateo, CA.
    • (1990)
    • Touretzky, D.S.1
  • 242
    • 0000612851 scopus 로고
    • Rounding-off errors in matrix processes
    • Turing, A. M. (1948). Rounding-off errors in matrix processes. Quart. J. Mech, pp. 287-308.
    • (1948) Quart. J. Mech , pp. 287-308
    • Turing, A.M.1
  • 243
    • 84889350306 scopus 로고
    • Selecting neural network architectures via the prediction risk: application to corporate bond rating prediction
    • Proc. of the First Int. Conf on AI Applications on Wall Street, Los Alamos, CA. IEEE Computer Society
    • Utans, J. and Moody, J. (1991). Selecting neural network architectures via the prediction risk: application to corporate bond rating prediction. In Proc. of the First Int. Conf on AI Applications on Wall Street, Los Alamos, CA. IEEE Computer Society.
    • (1991)
    • Utans, J.1    Moody, J.2
  • 244
    • 0003450542 scopus 로고
    • The Nature of Statistical Learning Theory
    • Springer, New York
    • Vapnik, V. N. (1995). The Nature of Statistical Learning Theory. Springer, New York.
    • (1995)
    • Vapnik, V.N.1
  • 245
    • 0003895851 scopus 로고    scopus 로고
    • Modern Applied Statistics with S-Plus
    • Springer, New York, first edition
    • Venables, W. N. and Ripley, B. D. (1994). Modern Applied Statistics with S-Plus. Springer, New York, first edition.
    • (1994)
    • Venables, W.N.1    Ripley, B.D.2
  • 246
    • 0003895851 scopus 로고    scopus 로고
    • Modern Applied Statistics with S-Plus
    • Springer, New York, third edition
    • Venables, W. N. and Ripley, B. D. (1999). Modern Applied Statistics with S-Plus. Springer, New York, third edition.
    • (1999)
    • Venables, W.N.1    Ripley, B.D.2
  • 247
    • 0004263710 scopus 로고    scopus 로고
    • S Programming
    • Springer, New York
    • Venables, W. N. and Ripley, B. D. (2000). S Programming. Springer, New York.
    • (2000)
    • Venables, W.N.1    Ripley, B.D.2
  • 248
    • 0003895851 scopus 로고    scopus 로고
    • Modern Applied Statistics with S
    • Springer, New York, fourth edition
    • Venables, W. N. and Ripley, B. D. (2002). Modern Applied Statistics with S. Springer, New York, fourth edition.
    • (2002)
    • Venables, W.N.1    Ripley, B.D.2
  • 249
    • 0003466536 scopus 로고
    • Spline Models for Observational Data, volume 59 of Regional Conference in Applied Mathematics
    • S.I.A.M
    • Wahba, G. (1990). Spline Models for Observational Data, volume 59 of Regional Conference in Applied Mathematics. S.I.A.M.
    • (1990)
    • Wahba, G.1
  • 250
    • 84889284028 scopus 로고    scopus 로고
    • A comparison of regression spline smoothing procedures
    • Unpublished manuscript available at
    • Wand, M. P. (1999). A comparison of regression spline smoothing procedures. Unpublished manuscript available at http://www.biostat.harvard.edu/~mwand/papers.html.
    • (1999)
    • Wand, M.P.1
  • 251
    • 0025208603 scopus 로고
    • The optimized internal representation of multilayer classifier networks performs nonlinear discriminant analysis
    • Webb, A. and Lowe, D. (1990). The optimized internal representation of multilayer classifier networks performs nonlinear discriminant analysis. Neural Networks, 3:367-375.
    • (1990) Neural Networks , vol.3 , pp. 367-375
    • Webb, A.1    Lowe, D.2
  • 252
    • 0003911488 scopus 로고
    • A comparison of nonlinear optimization strategies for feed-forward adaptive layered networks
    • Technical Report 4157, Royal Signal and Radar Establishment
    • Webb, A., Lowe, D., and Bedworth, M. (1988). A comparison of nonlinear optimization strategies for feed-forward adaptive layered networks. Technical Report 4157, Royal Signal and Radar Establishment.
    • (1988)
    • Webb, A.1    Lowe, D.2    Bedworth, M.3
  • 253
    • 0001886404 scopus 로고
    • On overfitting and the effective number of hidden units
    • Mozer, M. C, editor, Proceedings of the 1993 Connectionist Models Summer School, Hillsdale, NJ. Lawrence Erlbaum
    • Weigend, A. S. (1994). On overfitting and the effective number of hidden units. In Mozer, M. C, editor, Proceedings of the 1993 Connectionist Models Summer School, pp. 335-342, Hillsdale, NJ. Lawrence Erlbaum.
    • (1994) , pp. 335-342
    • Weigend, A.S.1
  • 254
    • 0000539096 scopus 로고
    • Generalization by weight-elimination with application to forecasting
    • Lippmann et al. (1991)
    • Weigend, A. S., Rumelhart, D. E., and Huberman, B. A. (1991). Generalization by weight-elimination with application to forecasting. In Lippmann et al. (1991), pp. 875-882.
    • (1991) , pp. 875-882
    • Weigend, A.S.1    Rumelhart, D.E.2    Huberman, B.A.3
  • 255
    • 0343839296 scopus 로고
    • Beyond Regression
    • PhD thesis, Harvard University
    • Werbos, P. (1974). Beyond Regression. PhD thesis, Harvard University.
    • (1974)
    • Werbos, P.1
  • 256
    • 0000243355 scopus 로고
    • Learning in artificial neural networks: A statistical perspective
    • White, H. (1989). Learning in artificial neural networks: A statistical perspective. Neural Computation, 1:425-464.
    • (1989) Neural Computation , vol.1 , pp. 425-464
    • White, H.1
  • 257
    • 0025488663 scopus 로고
    • 30 years of adaptive networks: perceptron, madaline and backpropagation
    • Widrow, B. and Lehr, M. A. (1990). 30 years of adaptive networks: perceptron, madaline and backpropagation. Proceedings of the IEEE, 78(9): 1415-1442.
    • (1990) Proceedings of the IEEE , vol.78 , Issue.9 , pp. 1415-1442
    • Widrow, B.1    Lehr, M.A.2
  • 258
    • 0001962018 scopus 로고
    • Integration of neural and statistical approaches in spatial data classification
    • Wilkinson, G. G., Fierens, F., and Kanellopoulos, I. (1995). Integration of neural and statistical approaches in spatial data classification. Geographical Systems, 2:1-20.
    • (1995) Geographical Systems , vol.2 , pp. 1-20
    • Wilkinson, G.G.1    Fierens, F.2    Kanellopoulos, I.3
  • 259
    • 0000673452 scopus 로고
    • Bayesian regularization and pruning using a Laplacian prior
    • Williams, P. (1995). Bayesian regularization and pruning using a Laplacian prior. Neural Computation, 7:117-143.
    • (1995) Neural Computation , vol.7 , pp. 117-143
    • Williams, P.1
  • 260
    • 0027007568 scopus 로고
    • A comparison of procedures for classifying remotely-sensed data using simulated data sets incorporating autocorrelations between spectral responses
    • Wilson, J. (1992). A comparison of procedures for classifying remotely-sensed data using simulated data sets incorporating autocorrelations between spectral responses. Int. J. Remote Sensing, 13(14):2701-2725.
    • (1992) Int. J. Remote Sensing , vol.13 , Issue.14 , pp. 2701-2725
    • Wilson, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.