-
2
-
-
84889234793
-
Superintegrability on three-dimensional Riemannian and relativistic spaces of constant curvature
-
22 pages, math-ph/0512084
-
Ballesteros A., Herranz F.J., Superintegrability on three-dimensional Riemannian and relativistic spaces of constant curvature, SIGMA 2 (2006), 010, 22 pages, math-ph/0512084.
-
(2006)
SIGMA
, vol.2
, pp. 010
-
-
Ballesteros, A.1
Herranz, F.J.2
-
3
-
-
0003853546
-
-
Cambridge University Press, Cambridge
-
Brannan D.A., Esplen M.F., Gray J.J., Geometry, Cambridge University Press, Cambridge, 1999.
-
(1999)
Geometry
-
-
Brannan, D.A.1
Esplen, M.F.2
Gray, J.J.3
-
4
-
-
33748923094
-
Two-dimensional hypercomplex numbers and related trigonometries and geometries
-
Cannata R., Catoni F., Catoni V., Zampetti P., Two-dimensional hypercomplex numbers and related trigonometries and geometries, Adv. Appl. Clifford Algebr. 14 (2004), 47-68.
-
(2004)
Adv. Appl. Clifford Algebr.
, vol.14
, pp. 47-68
-
-
Cannata, R.1
Catoni, F.2
Catoni, V.3
Zampetti, P.4
-
5
-
-
0038868996
-
-
2nd ed., Clarendon Press, Oxford
-
Gray J.J., Ideas of space, 2nd ed., Clarendon Press, Oxford, 1979.
-
(1979)
Ideas of Space
-
-
Gray, J.J.1
-
6
-
-
36549098437
-
The Jordan-Schwinger representations of Cayley-Klein groups I: The orthogonal groups
-
Gromov N., The Jordan-Schwinger representations of Cayley-Klein groups I: The orthogonal groups, J. Math. Phys. 31 (1990), 1047-1053.
-
(1990)
J. Math. Phys.
, vol.31
, pp. 1047-1053
-
-
Gromov, N.1
-
7
-
-
0007119708
-
Transitions: Contractions and analytic continuations of the Cayley-Klein groups
-
Gromov N., Transitions: contractions and analytic continuations of the Cayley-Klein groups, Internat. J. Theoret. Phys. 29 (1990), 607-620.
-
(1990)
Internat. J. Theoret. Phys.
, vol.29
, pp. 607-620
-
-
Gromov, N.1
-
8
-
-
36449005444
-
The Gelfand-Tsetlin representations of the orthogonal Cayley-Klein algebras
-
Gromov N., The Gelfand-Tsetlin representations of the orthogonal Cayley-Klein algebras, J. Math. Phys. 33 (1992), 1363-1373.
-
(1992)
J. Math. Phys.
, vol.33
, pp. 1363-1373
-
-
Gromov, N.1
-
9
-
-
85006828990
-
Special orthogonal groups in Cayley-Klein spaces
-
Gromov N.A., Moskaliuk S.S., Special orthogonal groups in Cayley-Klein spaces, Hadronic J. 18 (1995), 451-483.
-
(1995)
Hadronic J
, vol.18
, pp. 451-483
-
-
Gromov, N.A.1
Moskaliuk, S.S.2
-
10
-
-
84889236346
-
Classification of transitions between groups in Cayley-Klein spaces and kinematic groups
-
Gromov N.A., Moskaliuk S.S., Classification of transitions between groups in Cayley-Klein spaces and kinematic groups, Hadronic J. 19 (1996), 407-435.
-
(1996)
Hadronic J
, vol.19
, pp. 407-435
-
-
Gromov, N.A.1
Moskaliuk, S.S.2
-
11
-
-
1642548024
-
Two-dimensional geometries, topologies, trigonometries and physics generated by complex-type numbers
-
Fjelstad P., Gal S.G., Two-dimensional geometries, topologies, trigonometries and physics generated by complex-type numbers, Adv. Appl. Clifford Algebr. 11 (2001), 81-107.
-
(2001)
Adv. Appl. Clifford Algebr.
, vol.11
, pp. 81-107
-
-
Fjelstad, P.1
Gal, S.G.2
-
12
-
-
21144440994
-
Geometry of generalized complex numbers
-
Harkin A.A., Harkin J.B., Geometry of generalized complex numbers, Math. Mag. 77 (2004), 118-129.
-
(2004)
Math. Mag.
, vol.77
, pp. 118-129
-
-
Harkin, A.A.1
Harkin, J.B.2
-
13
-
-
0039462795
-
Homogeneous phase spaces: The Cayley-Klein framework
-
physics/9702030
-
Herranz F.J., Ortega R., Santander M., Homogeneous phase spaces: the Cayley-Klein framework, Mem. Real Acad. Cienc. Exact. Fís. Natur. Madrid 32 (1998), 59-84, physics/9702030.
-
(1998)
Mem. Real Acad. Cienc. Exact. Fís. Natur. Madrid.
, vol.32
, pp. 59-84
-
-
Herranz, F.J.1
Ortega, R.2
Santander, M.3
-
14
-
-
0034705244
-
Trigonometry of spacetimes: A new self-dual approach to a curvature/signature (in)dependent trigonometry
-
math-ph/9910041
-
Herranz F.J., Ortega R., Santander M., Trigonometry of spacetimes: a new self-dual approach to a curvature/signature (in)dependent trigonometry, J. Phys. A: Math. Gen. 33 (2000), 4525-4551, math-ph/9910041.
-
(2000)
J. Phys. A: Math. Gen.
, vol.33
, pp. 4525-4551
-
-
Herranz, F.J.1
Ortega, R.2
Santander, M.3
-
15
-
-
0037047630
-
Conformal symmetries of spacetimes
-
math-ph/0110019
-
Herranz F.J., Santander M., Conformal symmetries of spacetimes, J. Phys. A: Math. Gen. 35 (2002), 6601-6618, math-ph/0110019.
-
(2002)
J. Phys. A: Math. Gen.
, vol.35
, pp. 6601-6618
-
-
Herranz, F.J.1
Santander, M.2
-
16
-
-
0041881787
-
Conformal compactification of spacetimes
-
math-ph/0110019
-
Herranz F.J., Santander M., Conformal compactification of spacetimes, J. Phys. A: Math. Gen. 35 (2002), 6619-6629, math-ph/0110019.
-
(2002)
J. Phys. A: Math. Gen.
, vol.35
, pp. 6619-6629
-
-
Herranz, F.J.1
Santander, M.2
-
17
-
-
84950523764
-
On the contraction of groups and their representations
-
Inonu E., Wigner E.P., On the contraction of groups and their representations, Proc. Nat. Acad. Sci. U.S.A. 39 1953, 510-524.
-
(1953)
Proc. Nat. Acad. Sci. U.S.A.
, vol.39
, pp. 510-524
-
-
Inonu, E.1
Wigner, E.P.2
-
18
-
-
0009245845
-
-
2nd ed., Addison Wesley Longman, Inc., New York
-
Katz V., A history of mathematics: an introduction, 2nd ed., Addison Wesley Longman, Inc., New York, 1998.
-
(1998)
A History of Mathematics: An Introduction
-
-
Katz, V.1
-
19
-
-
84857447649
-
Über die sogenannte nicht-Euklidische geometrie
-
Klein F., Über die sogenannte nicht-Euklidische geometrie, Gesammelte Math. Abh. I (1921), 254-305, 311-343, 344-350, 353-383.
-
(1921)
Gesammelte Math. Abh.
, vol.1
-
-
Klein, F.1
-
20
-
-
33746216264
-
The Gauss-Bonnet theorem for Cayley-Klein geometries of dimension two
-
McRae A.S., The Gauss-Bonnet theorem for Cayley-Klein geometries of dimension two, New York J. Math. 12 (2006), 143-155.
-
(2006)
New York J. Math.
, vol.12
, pp. 143-155
-
-
McRae, A.S.1
-
22
-
-
0007033883
-
Unified axiomatics of spaces with the maximum group of motions
-
Pimenov R.I., Unified axiomatics of spaces with the maximum group of motions, Litovsk. Mat. Sb. 5 (1965), 457-486.
-
(1965)
Litovsk. Mat. Sb.
, vol.5
, pp. 457-486
-
-
Pimenov, R.I.1
-
23
-
-
34250133920
-
Group contraction and the nine Cayley-Klein geometries, Internat
-
Fernández Sanjuan M.A., Group contraction and the nine Cayley-Klein geometries, Internat. J. Theoret. Phys. 23 (1984), 1-14.
-
(1984)
J. Theoret. Phys.
, vol.23
, pp. 1-14
-
-
Fernández, S.M.A.1
-
24
-
-
21244461912
-
The Hyperbolic-AntiDeSitter-DeSitter triality
-
Santander M., The Hyperbolic-AntiDeSitter-DeSitter triality, Pub. de la RSME 5 (2005), 247-260.
-
(2005)
Pub. De La RSME.
, vol.5
, pp. 247-260
-
-
Santander, M.1
-
25
-
-
0003604601
-
-
Springer-Verlag, New York
-
Sattinger D.H., Weaver O.L., Lie groups and algebras with applications to physics, geometry, and mechanics, Springer-Verlag, New York, 1986.
-
(1986)
Lie Groups and Algebras with Applications to Physics, Geometry, and Mechanics
-
-
Sattinger, D.H.1
Weaver, O.L.2
-
26
-
-
84958735521
-
Classification of geometries with projective metrics
-
Sommerville D.M.Y., Classification of geometries with projective metrics, Proc. Edinb. Math. Soc. 28 (1910-1911), 25-41.
-
(1910)
Proc. Edinb. Math. Soc.
, vol.28
, pp. 25-41
-
-
Sommerville, D.M.Y.1
-
27
-
-
0042025724
-
-
Editor J. Gray, Oxford University Press, Oxford
-
Walker S., The non-Euclidean style of Minkowskian relativity, in The Symbolic Universe, Editor J. Gray, Oxford University Press, Oxford, 1999, 91-127.
-
(1999)
The Non-Euclidean Style of Minkowskian Relativity, in the Symbolic Universe
, pp. 91-127
-
-
Walker, S.1
-
28
-
-
0003528497
-
-
Heidelberg Science Library, translated from the Russian by A. Shenitzer, with the editorial assistance of B. Gordon, Springer-Verlag, New York - Heidelberg
-
Yaglom I.M., A simple non-Euclidean geometry and its physical basis: an elementary account of Galilean geometry and the Galilean principle of relativity, Heidelberg Science Library, translated from the Russian by A. Shenitzer, with the editorial assistance of B. Gordon, Springer-Verlag, New York - Heidelberg, 1979.
-
(1979)
A Simple Non-Euclidean Geometry and Its Physical Basis: An Elementary Account of Galilean Geometry and The Galilean Principle of Relativity
-
-
Yaglom, I.M.1
|