-
1
-
-
33750827437
-
New examples of trihamiltonian structures linking different Lenard chains
-
in Proceedings of the International Conference on SPT2004, May 30 - June 6, 2004, Cala Gonone, Sardinia, Italy), Editors G. Gaeta, B. Prinari, S. Rauch-Wojciechowski and S. Terracini, World Scientific
-
Andrà C., Degiovanni L., New examples of trihamiltonian structures linking different Lenard chains, in Proceedings of the International Conference on SPT2004 "Symmetry and Perturbation Theory" (May 30 - June 6, 2004, Cala Gonone, Sardinia, Italy), Editors G. Gaeta, B. Prinari, S. Rauch-Wojciechowski and S. Terracini, World Scientific, 2005, 13-21.
-
(2005)
Symmetry and Perturbation Theory
, pp. 13-21
-
-
Andrà, C.1
Degiovanni, L.2
-
3
-
-
0003313265
-
Theory of tensor invariants of integrable Hamiltonian systems
-
Bogoyavlenskij O.I., Theory of tensor invariants of integrable Hamiltonian systems. I. Incompatible Poisson structures, Comm. Math. Phys., 1996, V.180, N 3, 529-586.
-
(1996)
I. Incompatible Poisson Structures, Comm. Math. Phys
, vol.180
, Issue.3
, pp. 529-586
-
-
Bogoyavlenskij, O.I.1
-
4
-
-
0007406230
-
Compatible Poisson brackets on Lie algebras and the completeness of families of functions in involution
-
Bolsinov A.V., Compatible Poisson brackets on Lie algebras and the completeness of families of functions in involution, Math. USSR-Izv., 1992, V.38, N 1, 69-90.
-
(1992)
Math. USSR-Izv
, vol.38
, Issue.1
, pp. 69-90
-
-
Bolsinov, A.V.1
-
5
-
-
0001872281
-
Multiple Hamiltonian structures for Toda systems of types A-B-C
-
Damianou P.A., Multiple Hamiltonian structures for Toda systems of types A-B-C, Regul. Chaotic Dyn., 2000, V.5, N 1, 17-32.
-
(2000)
Regul. Chaotic Dyn
, vol.5
, Issue.1
, pp. 17-32
-
-
Damianou, P.A.1
-
7
-
-
0002161530
-
The Korteweg-de Vries equation is a fully integrable Hamiltonian system
-
Faddeev L.D., Zakharov V.E., The Korteweg-de Vries equation is a fully integrable Hamiltonian system, Funct. Anal. Appl., 1971, V.5, 18-27.
-
(1971)
Funct. Anal. Appl
, vol.5
, pp. 18-27
-
-
Faddeev, L.D.1
Zakharov, V.E.2
-
8
-
-
0001159402
-
Completely integrable bi-Hamiltonian systems
-
Fernandes R.L., Completely integrable bi-Hamiltonian systems, J. Dynam. Diff. Equations, 1994, V.6, N 1, 63-69.
-
(1994)
J. Dynam. Diff. Equations
, vol.6
, Issue.1
, pp. 63-69
-
-
Fernandes, R.L.1
-
9
-
-
51249181307
-
On the structure of symplectic operators and hereditary symmetries
-
Fokas A.S., Fuchssteiner B., On the structure of symplectic operators and hereditary symmetries, Lett. Nuovo Cimento, 1981, V.28, N 8, 299-303.
-
(1981)
Lett. Nuovo Cimento
, vol.28
, Issue.8
, pp. 299-303
-
-
Fokas, A.S.1
Fuchssteiner, B.2
-
10
-
-
36049057587
-
Method of solving the Korteweg-de Vries equation
-
Gardner C.S., Greene J.M., Kruskal M.D., Miura R.M., Method of solving the Korteweg-de Vries equation, Phys. Rev. Lett., 1967, V.19, 1095-1097.
-
(1967)
Phys. Rev. Lett
, vol.19
, pp. 1095-1097
-
-
Gardner, C.S.1
Greene, J.M.2
Kruskal, M.D.3
Miura, R.M.4
-
11
-
-
36849102552
-
Korteweg-de Vries equation and generalizations. IV. The Korteweg-de Vries equations as a Hamiltonian system
-
Gardner C.S., Korteweg-de Vries equation and generalizations. IV. The Korteweg-de Vries equations as a Hamiltonian system, J. Math. Phys., 1971, V.12, 1548-1551.
-
(1971)
J. Math. Phys
, vol.12
, pp. 1548-1551
-
-
Gardner, C.S.1
-
12
-
-
84980193643
-
Korteweg-de Vries equation and generalizations
-
Gardner C.S., Greene J.M., Kruskal M.D., Miura R.M., Korteweg-de Vries equation and generalizations. VI. Methods for exact solution, Comm. Pure Appl. Math., 1974, V.27, 97-133.
-
(1974)
VI. Methods For Exact Solution, Comm. Pure Appl. Math
, vol.27
, pp. 97-133
-
-
Gardner, C.S.1
Greene, J.M.2
Kruskal, M.D.3
Miura, R.M.4
-
13
-
-
25844439585
-
Hamiltonian operators and algebraic structures related to them
-
Gel'fand I.M., Dorfman I.Ya., Hamiltonian operators and algebraic structures related to them, Funct. Anal. Appl., 1979, V.13, 248-262.
-
(1979)
Funct. Anal. Appl
, vol.13
, pp. 248-262
-
-
Gel'fand, I.M.1
Dorfman, I.Y.2
-
14
-
-
0000466224
-
Webs, Lenard schemes, and the local geometry of bi-Hamiltonian Toda and Lax structures
-
Gel'fand I.M., Zakharevich I., Webs, Lenard schemes, and the local geometry of bi-Hamiltonian Toda and Lax structures, Selecta Math., 2000, V.6, N 2, 131-183.
-
(2000)
Selecta Math
, vol.6
, Issue.2
, pp. 131-183
-
-
Gel'fand, I.M.1
Zakharevich, I.2
-
15
-
-
33748058184
-
Korteweg-de Vries equation and generalizations. V. Uniqueness and nonexistence of polynomial conservation laws
-
Kruskal M.D., Miura R.M., Gardner C.S., Zabusky N.J., Korteweg-de Vries equation and generalizations. V. Uniqueness and nonexistence of polynomial conservation laws, J. Math. Phys., 1970, V.11, 952-960.
-
(1970)
J. Math. Phys
, vol.11
, pp. 952-960
-
-
Kruskal, M.D.1
Miura, R.M.2
Gardner, C.S.3
Zabusky, N.J.4
-
16
-
-
0000991407
-
Almost periodic solutions of the KdV equation
-
Lax P. D., Almost periodic solutions of the KdV equation, SIAM Review, 1976, V.18, N 3, 351-375.
-
(1976)
SIAM Review
, vol.18
, Issue.3
, pp. 351-375
-
-
Lax, P.D.1
-
17
-
-
36749117832
-
A simple model of the integrable Hamiltonian equation
-
Magri F., A simple model of the integrable Hamiltonian equation, J. Math. Phys., 1978, V.19, 1156-1162.
-
(1978)
J. Math. Phys
, vol.19
, pp. 1156-1162
-
-
Magri, F.1
-
18
-
-
3943102068
-
Lenard chains for classical integrable systems
-
in Russian
-
Magri F., Lenard chains for classical integrable systems, Theoret. Mat. Fiz., 2003, V.137, N 3, 424-432 (in Russian).
-
(2003)
Theoret. Mat. Fiz
, vol.137
, pp. 424-432
-
-
Magri, F.1
-
19
-
-
0003223916
-
A geometrical characterization of integrable Hamiltonian systems through the theory of Poisson-Nijenhuis manifolds
-
University of Milan
-
Magri F., Morosi C., A geometrical characterization of integrable Hamiltonian systems through the theory of Poisson-Nijenhuis manifolds, Quaderno, V.19, University of Milan, 1984.
-
(1984)
Quaderno
, vol.19
-
-
Magri, F.1
Morosi, C.2
-
20
-
-
0000855385
-
Nijenhuis G-manifolds and Lenard bicomplexes: A new approach to KP systems
-
Magri F., Morosi C., Tondo G., Nijenhuis G-manifolds and Lenard bicomplexes: a new approach to KP systems, Comm. Math. Phys., 1988, V.115, N 3, 457-475.
-
(1988)
Comm. Math. Phys
, vol.115
, Issue.3
, pp. 457-475
-
-
Magri, F.1
Morosi, C.2
Tondo, G.3
-
21
-
-
33748069497
-
Korteweg-de Vries equation and generalizations. II. Existence of conservation laws and constants of motion
-
Miura R. M., Gardner C.S., Kruskal M.D., Korteweg-de Vries equation and generalizations. II. Existence of conservation laws and constants of motion, J. Math. Phys., 1968, V.9, 1204-1209.
-
(1968)
J. Math. Phys
, vol.9
, pp. 1204-1209
-
-
Miura, R.M.1
Gardner, C.S.2
Kruskal, M.D.3
-
22
-
-
36849110505
-
Korteweg-de Vries equation and generalizations. I. A remarkable explicit non-linear transfor- mation
-
Miura R.M., Korteweg-de Vries equation and generalizations. I. A remarkable explicit non-linear transfor- mation, J. Math. Phys., 1968, V.9, 1202-1204.
-
(1968)
J. Math. Phys
, vol.9
, pp. 1202-1204
-
-
Miura, R.M.1
-
23
-
-
36749108571
-
Evolution equations possessing infinitely many symmetries
-
Olver P.J., Evolution equations possessing infinitely many symmetries, J. Math. Phys., 1977, V.18, N 6, 1212-1215.
-
(1977)
J. Math. Phys
, vol.18
, Issue.6
, pp. 1212-1215
-
-
Olver, P.J.1
-
25
-
-
0001180516
-
Bi-Hamiltonian formalism: A constructive approach
-
Smirnov R.G., Bi-Hamiltonian formalism: A constructive approach, Lett. Math. Phys., 1997, V.41, N 4, 333-347.
-
(1997)
Lett. Math. Phys
, vol.41
, Issue.4
, pp. 333-347
-
-
Smirnov, R.G.1
-
26
-
-
3242810498
-
A simple way of making a Hamiltonian system into a bi-Hamiltonian one
-
Sergyeyev A., A simple way of making a Hamiltonian system into a bi-Hamiltonian one, Acta Appl. Math., 2004, V.83, N 1-2, 183-197.
-
(2004)
Acta Appl. Math
, vol.83
, Issue.1-2
, pp. 183-197
-
-
Sergyeyev, A.1
-
27
-
-
36849102307
-
Korteweg-de Vries equation and generalizations. III. Derivation of the Korteweg-de Vries equation and Burgers equation
-
Su C.H., Gardner C.S., Korteweg-de Vries equation and generalizations. III. Derivation of the Korteweg-de Vries equation and Burgers equation, J. Math. Phys., 1969, V.10, 536-539.
-
(1969)
J. Math. Phys
, vol.10
, pp. 536-539
-
-
Su, C.H.1
Gardner, C.S.2
-
28
-
-
33846361348
-
Interaction of "solitons" in a collisionless plasma and the recurrence of initial states
-
Zabusky N.J., Kruskal M.D., Interaction of "solitons" in a collisionless plasma and the recurrence of initial states, Phys. Rev. Lett., 1965, V.15, 240-243.
-
(1965)
Phys. Rev. Lett
, vol.15
, pp. 240-243
-
-
Zabusky, N.J.1
Kruskal, M.D.2
|