메뉴 건너뛰기




Volumn , Issue , 2013, Pages 3-12

Using Naive Bayes to detect spammy names in social networks

Author keywords

naive bayes classifier; social networks; spam detection

Indexed keywords

FALSE POSITIVE RATES; GENERATION ALGORITHM; NAIVE BAYES CLASSIFIERS; ON-LINE INFORMATION; REGULAR EXPRESSIONS; SCORING ALGORITHMS; SPAM DETECTION; TERMS OF SERVICES;

EID: 84888989407     PISSN: 15437221     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2517312.2517314     Document Type: Conference Paper
Times cited : (42)

References (31)
  • 5
    • 0031620208 scopus 로고    scopus 로고
    • Combining labeled and unlabeled data with co-training
    • A. Blum and T. M. Mitchell. Combining labeled and unlabeled data with co-training. In COLT, pages 92-100, 1998.
    • (1998) COLT , pp. 92-100
    • Blum, A.1    Mitchell, T.M.2
  • 7
    • 84875218836 scopus 로고    scopus 로고
    • Aiding the detection of fake accounts in large scale social online services
    • Q. Cao, M. Sirivianos, X. Yang, and T. Pregueiro. Aiding the detection of fake accounts in large scale social online services. In NDSI, 2012.
    • (2012) NDSI
    • Cao, Q.1    Sirivianos, M.2    Yang, X.3    Pregueiro, T.4
  • 10
    • 0002419948 scopus 로고    scopus 로고
    • Beyond independence: Conditions for the optimality of the simple Bayesian classifier
    • Morgan Kaufmann
    • P. Domingos and M. Pazzani. Beyond independence: Conditions for the optimality of the simple Bayesian classifier. In Machine Learning, pages 105-112. Morgan Kaufmann, 1996.
    • (1996) Machine Learning , pp. 105-112
    • Domingos, P.1    Pazzani, M.2
  • 11
    • 0031269184 scopus 로고    scopus 로고
    • On the optimality of the simple Bayesian classifier under zero-one loss
    • P. Domingos and M. Pazzani. On the optimality of the simple Bayesian classifier under zero-one loss. Machine learning, 29(2-3):103-130, 1997.
    • (1997) Machine Learning , vol.29 , Issue.2-3 , pp. 103-130
    • Domingos, P.1    Pazzani, M.2
  • 15
    • 84889006152 scopus 로고    scopus 로고
    • accessed 17 Jul 2013
    • Google Inc. User content and conduct policy. http://www.google.com/intl/ en/+/policy/content.html, accessed 17 Jul 2013.
    • User Content and Conduct Policy
  • 16
    • 84888986410 scopus 로고    scopus 로고
    • Naive Bayes spam filtering using word-position-based attributes
    • J. Hovold. Naive Bayes spam filtering using word-position-based attributes. In CEAS, 2005.
    • (2005) CEAS
    • Hovold, J.1
  • 18
    • 84889016413 scopus 로고    scopus 로고
    • LinkedIn Corporation. accurate as of 1 Jun
    • LinkedIn Corporation. Internal data, accurate as of 1 Jun 2013.
    • (2013) Internal Data
  • 20
    • 84874870265 scopus 로고    scopus 로고
    • accessed 17 Jul 2013
    • LinkedIn Corporation. User agreement. http://www.linkedin.com/legal/user- agreement, accessed 17 Jul 2013.
    • User Agreement
  • 21
    • 0001673996 scopus 로고    scopus 로고
    • A comparison of event models for Naive Bayes text classification
    • A. McCallum and K. Nigam. A comparison of event models for Naive Bayes text classification. In Proceedings of AAAI, 1998.
    • Proceedings of AAAI, 1998
    • McCallum, A.1    Nigam, K.2
  • 22
    • 84904809957 scopus 로고    scopus 로고
    • Spam filtering with Naive Bayes - Which Naive Bayes?
    • V. Metsis, I. Androutsopoulos, and G. Paliouras. Spam filtering with Naive Bayes - which Naive Bayes? In CEAS, 2006.
    • (2006) CEAS
    • Metsis, V.1    Androutsopoulos, I.2    Paliouras, G.3
  • 26
    • 84991870594 scopus 로고    scopus 로고
    • A comparison of event models for Naive Bayes anti-spam e-mail filtering
    • K.-M. Schneider. A comparison of event models for Naive Bayes anti-spam e-mail filtering. In EACL, pages 307-314, 2003.
    • (2003) EACL , pp. 307-314
    • Schneider, K.-M.1
  • 27
    • 36549012987 scopus 로고    scopus 로고
    • An evaluation of Naive Bayes variants in content-based learning for spam filtering
    • A. K. Seewald. An evaluation of Naive Bayes variants in content-based learning for spam filtering. Intelligent Data Analysis, 11(5):497-524, 2007.
    • (2007) Intelligent Data Analysis , vol.11 , Issue.5 , pp. 497-524
    • Seewald, A.K.1
  • 30
    • 79952907127 scopus 로고    scopus 로고
    • Detecting and analyzing automated activity on Twitter
    • C. M. Zhang and V. Paxson. Detecting and analyzing automated activity on Twitter. In PAM, pages 102-111, 2011.
    • (2011) PAM , pp. 102-111
    • Zhang, C.M.1    Paxson, V.2
  • 31
    • 10044283198 scopus 로고    scopus 로고
    • The optimality of Naive Bayes
    • H. Zhang. The optimality of Naive Bayes. In FLAIRS Conference, pages 562-567, 2004.
    • (2004) FLAIRS Conference , pp. 562-567
    • Zhang, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.