메뉴 건너뛰기




Volumn 630, Issue , 2010, Pages 13-18

RankReduce - Processing K-Nearest Neighbor queries on top of MapReduce

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTING CLUSTERS; DISTRIBUTED FILE SYSTEMS; K NEAREST NEIGHBOR (KNN); K-NEAREST NEIGHBORS; K-NEAREST-NEIGHBOR QUERIES; LOCALITY SENSITIVE HASHING; PERFECT MATCHES; SEARCH PROCESS;

EID: 84888857591     PISSN: 16130073     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (44)

References (24)
  • 1
    • 38749118638 scopus 로고    scopus 로고
    • Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions
    • Alexandr Andoni and Piotr Indyk. Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions. In FOCS, 2006.
    • (2006) FOCS
    • Andoni, A.1    Indyk, P.2
  • 3
    • 70849112325 scopus 로고    scopus 로고
    • LSH forest: Self-tuning indexes for similarity search
    • Mayank Bawa, Tyson Condie, and Prasanna Ganesan. Lsh forest: self-tuning indexes for similarity search. In WWW, 2005.
    • (2005) WWW
    • Bawa, M.1    Condie, T.2    Ganesan, P.3
  • 5
    • 0037870443 scopus 로고    scopus 로고
    • The x-tree : An index structure for high-dimensional data
    • Stefan Berchtold, Daniel A. Keim, and Hans-Peter Kriegel. The x-tree : An index structure for high-dimensional data. In VLDB, 1996.
    • (1996) VLDB
    • Berchtold, S.1    Keim, D.A.2    Kriegel, H.-P.3
  • 9
    • 43249093335 scopus 로고    scopus 로고
    • Image retrieval: Ideas, influences, and trends of the new age
    • Ritendra Datta, Dhiraj Joshi, Jia Li, and James Ze Wang. Image retrieval: Ideas, influences, and trends of the new age. ACM Comput. Surv., 2008.
    • (2008) ACM Comput. Surv.
    • Datta, R.1    Joshi, D.2    Li, J.3    Wang, J.Z.4
  • 10
    • 85030321143 scopus 로고    scopus 로고
    • Mapreduce: Simplified data processing on large clusters
    • Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing on large clusters. In OSDI, 2004.
    • (2004) OSDI
    • Dean, J.1    Ghemawat, S.2
  • 11
    • 84888877989 scopus 로고    scopus 로고
    • Similarity searching in structured and unstructured P2P networks
    • Vlastislav Dohnal and Pavel Zezula. Similarity searching in structured and unstructured p2p networks. In QSHINE, 2009.
    • (2009) QSHINE
    • Dohnal, V.1    Zezula, P.2
  • 13
    • 70450182013 scopus 로고    scopus 로고
    • Peer-to-peer similarity search over widely distributed document collections
    • Christos Doulkeridis, Kjetil Nørvåg, and Michalis Vazirgiannis. Peer-to-peer similarity search over widely distributed document collections. In LSDS-IR, 2008.
    • (2008) LSDS-IR
    • Doulkeridis, C.1    Nørvåg, K.2    Vazirgiannis, M.3
  • 14
    • 34547457056 scopus 로고    scopus 로고
    • A content-addressable network for similarity search in metric spaces
    • Fabrizio Falchi, Claudio Gennaro, and Pavel Zezula. A content-addressable network for similarity search in metric spaces. In DBISP2P, 2005.
    • (2005) DBISP2P
    • Falchi, F.1    Gennaro, C.2    Zezula, P.3
  • 16
    • 15044355327 scopus 로고    scopus 로고
    • Similarity search in high dimensions via hashing
    • Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Similarity search in high dimensions via hashing. In VLDB, 1999.
    • (1999) VLDB
    • Gionis, A.1    Indyk, P.2    Motwani, R.3
  • 17
    • 70349117206 scopus 로고    scopus 로고
    • Distributed similarity search in high dimensions using locality sensitive hashing
    • Parisa Haghani, Sebastian Michel, and Karl Aberer. Distributed similarity search in high dimensions using locality sensitive hashing. In EDBT, 2009.
    • (2009) EDBT
    • Haghani, P.1    Michel, S.2    Aberer, K.3
  • 18
    • 84857182809 scopus 로고    scopus 로고
    • Evaluating mapreduce on virtual machines: The hadoop case
    • Shadi Ibrahim, Hai Jin, Lu Lu, Li Qi, Song Wu, and Xuanhua Shi. Evaluating mapreduce on virtual machines: The hadoop case. In CloudCom, 2009.
    • (2009) CloudCom
    • Ibrahim, S.1    Jin, H.2    Lu, L.3    Qi, L.4    Wu, S.5    Shi, X.6
  • 19
    • 71749087578 scopus 로고    scopus 로고
    • Brute force and indexed approaches to pairwise document similarity comparisons with mapreduce
    • Jimmy J. Lin. Brute force and indexed approaches to pairwise document similarity comparisons with mapreduce. In SIGIR, 2009.
    • (2009) SIGIR
    • Lin, J.J.1
  • 20
    • 84955245129 scopus 로고    scopus 로고
    • Multi-probe LSH: Efficient indexing for high-dimensional similarity search
    • Qin Lv, William Josephson, Zhe Wang, Moses Charikar, and Kai Li. Multi-probe lsh: Efficient indexing for high-dimensional similarity search. In VLDB, 2007.
    • (2007) VLDB
    • Lv, Q.1    Josephson, W.2    Wang, Z.3    Charikar, M.4    Li, K.5
  • 23
    • 38049115362 scopus 로고    scopus 로고
    • Content-based similarity search over peer-to-peer systems
    • Ozgur D. Sahin, Fatih Emekçi, Divyakant Agrawal, and Amr El Abbadi. Content-based similarity search over peer-to-peer systems. In DBISP2P, 2004.
    • (2004) DBISP2P
    • Sahin, O.D.1    Emekçi, F.2    Agrawal, D.3    El Abbadi, A.4
  • 24
    • 77950912130 scopus 로고    scopus 로고
    • Gathering and ranking photos of named entities with high precision, high recall, and diversity
    • Bilyana Taneva, Mouna Kacimi, and Gerhard Weikum. Gathering and ranking photos of named entities with high precision, high recall, and diversity. In WSDM, 2010.
    • (2010) WSDM
    • Taneva, B.1    Kacimi, M.2    Weikum, G.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.