메뉴 건너뛰기




Volumn 22, Issue 6, 2013, Pages 661-670

Extension of the modified Poisson regression model to prospective studies with correlated binary data

Author keywords

cluster randomized trials; generalized estimating equations; logistic regression; odds ratio; relative risk; sandwich estimator

Indexed keywords

ARTICLE; CLUSTER ANALYSIS; CORRELATION COEFFICIENT; HUMAN; LOGISTIC REGRESSION ANALYSIS; POISSON DISTRIBUTION; PROBABILITY; PROSPECTIVE STUDY; RANDOMIZATION; RANDOMIZED CONTROLLED TRIAL (TOPIC); RISK FACTOR; STANDARDIZATION;

EID: 84888630702     PISSN: 09622802     EISSN: 14770334     Source Type: Journal    
DOI: 10.1177/0962280211427759     Document Type: Article
Times cited : (511)

References (34)
  • 2
    • 1642420994 scopus 로고    scopus 로고
    • A modified Poisson regression approach to prospective studies with binary data
    • Zou GY. A modified Poisson regression approach to prospective studies with binary data. Am J Epidemiol. 2004 ; 159: 702-706
    • (2004) Am J Epidemiol , vol.159 , pp. 702-706
    • Zou, G.Y.1
  • 3
    • 0023203943 scopus 로고
    • Interpretation and choice of effect measures in epidemiologic analyses
    • Greenland S. Interpretation and choice of effect measures in epidemiologic analyses. Am J Epidemiol. 1987 ; 125: 761-768
    • (1987) Am J Epidemiol , vol.125 , pp. 761-768
    • Greenland, S.1
  • 4
    • 0031777876 scopus 로고    scopus 로고
    • Should we adjust for covariates in nonlinear regression analyses of randomized trials?
    • Hauck WW, Anderson S, Marcus SM. Should we adjust for covariates in nonlinear regression analyses of randomized trials?. Control Clin Trials. 1998 ; 19: 249-256
    • (1998) Control Clin Trials , vol.19 , pp. 249-256
    • Hauck, W.W.1    Anderson, S.2    Marcus, S.M.3
  • 5
    • 33847278858 scopus 로고    scopus 로고
    • The effect of omitted covariates on confidence interval and study power in binary outcome analysis: A simulation study
    • Negassa A, Hanley JA. The effect of omitted covariates on confidence interval and study power in binary outcome analysis: A simulation study. Contemp Clin Trials. 2007 ; 28: 242-248
    • (2007) Contemp Clin Trials , vol.28 , pp. 242-248
    • Negassa, A.1    Hanley, J.A.2
  • 6
    • 50849122090 scopus 로고    scopus 로고
    • Randomization does not justify logistic regression
    • Freedman DA. Randomization does not justify logistic regression. Stat Sci. 2008 ; 23: 237-249
    • (2008) Stat Sci , vol.23 , pp. 237-249
    • Freedman, D.A.1
  • 8
    • 73449104741 scopus 로고    scopus 로고
    • Assessment of risks by predicting counterfactuals
    • Zou GY. Assessment of risks by predicting counterfactuals. Stat Med. 2009 ; 28: 3761-3781
    • (2009) Stat Med , vol.28 , pp. 3761-3781
    • Zou, G.Y.1
  • 9
    • 0022629577 scopus 로고
    • Binomial regression in GLIM: Estimating risk ratios and risk differences
    • Wacholder S. Binomial regression in GLIM: estimating risk ratios and risk differences. Am J Epidemiol. 1986 ; 123: 174-184
    • (1986) Am J Epidemiol , vol.123 , pp. 174-184
    • Wacholder, S.1
  • 10
    • 21644468954 scopus 로고    scopus 로고
    • Quasi-likelihood estimation for relative risk regression models
    • Carter RE, Lipsitz SR, Tilley BC. Quasi-likelihood estimation for relative risk regression models. Biostatistics. 2005 ; 6: 39-44
    • (2005) Biostatistics , vol.6 , pp. 39-44
    • Carter, R.E.1    Lipsitz, S.R.2    Tilley, B.C.3
  • 11
    • 79951486848 scopus 로고    scopus 로고
    • Relative risk estimation in randomized controlled trials: A comparison of methods for independent observations
    • Yelland LN, Salter AB, Ryan P. Relative risk estimation in randomized controlled trials: A comparison of methods for independent observations. Int J Biostat. 2011 ; 7 ( 1 ):
    • (2011) Int J Biostat , vol.7 , Issue.1
    • Yelland, L.N.1    Salter, A.B.2    Ryan, P.3
  • 12
    • 83755163650 scopus 로고    scopus 로고
    • Relative risk regression: Reliable and flexible methods for log-binomial models
    • Marschner IC, Gillett AC. Relative risk regression: reliable and flexible methods for log-binomial models. Biostatitics. 2012 ; 13 (1). 179-192
    • (2012) Biostatitics , vol.13 , Issue.1 , pp. 179-192
    • Marschner, I.C.1    Gillett, A.C.2
  • 13
    • 34547659742 scopus 로고    scopus 로고
    • Relative risks and confidence intervals were easily computed indirectly from multivariable logistic regression
    • Localio AR, Margolis DJ, Berlin JA. Relative risks and confidence intervals were easily computed indirectly from multivariable logistic regression. J Clin Epidemiol. 2007 ; 60: 874-882
    • (2007) J Clin Epidemiol , vol.60 , pp. 874-882
    • Localio, A.R.1    Margolis, D.J.2    Berlin, J.A.3
  • 14
    • 0019488347 scopus 로고
    • Covariance adjustment of rates based on the multiple logistic regression model
    • Lee J. Covariance adjustment of rates based on the multiple logistic regression model. J Chronic Dis. 1981 ; 34: 415-426
    • (1981) J Chronic Dis , vol.34 , pp. 415-426
    • Lee, J.1
  • 15
    • 0023257539 scopus 로고
    • Large sample confidence intervals for regression standardized risks, risk ratios, and risk differences
    • Flanders WD, Rhodes PH. Large sample confidence intervals for regression standardized risks, risk ratios, and risk differences. J Chronic Dis. 1987 ; 40: 697-704
    • (1987) J Chronic Dis , vol.40 , pp. 697-704
    • Flanders, W.D.1    Rhodes, P.H.2
  • 16
    • 0029052663 scopus 로고
    • Standardized estimates from categorical regression models
    • Joffe MM, Greenland S. Standardized estimates from categorical regression models. Stat Med. 1995 ; 14: 2131-2141
    • (1995) Stat Med , vol.14 , pp. 2131-2141
    • Joffe, M.M.1    Greenland, S.2
  • 17
    • 77649173768 scopus 로고
    • Longitudinal data analysis using generalized linear models
    • Liang KY, Zeger SL. Longitudinal data analysis using generalized linear models. Biometrika. 1986 ; 73: 13-22
    • (1986) Biometrika , vol.73 , pp. 13-22
    • Liang, K.Y.1    Zeger, S.L.2
  • 18
    • 0020078306 scopus 로고
    • Randomization by cluster: Sample size requirements and analysis
    • Donner A, Birkett N, Buck C. Randomization by cluster: sample size requirements and analysis. Am J Epidemiol. 1981 ; 114: 906-914
    • (1981) Am J Epidemiol , vol.114 , pp. 906-914
    • Donner, A.1    Birkett, N.2    Buck, C.3
  • 21
  • 22
    • 0037441919 scopus 로고    scopus 로고
    • Statistical analysis of correlated data using generalized estimating equations: An orientation
    • Hanley JA, Negassa A, deB Edwardes MD, Forrester JE. Statistical analysis of correlated data using generalized estimating equations: an orientation. Am J Epidemiol. 2003 ; 157: 364-375
    • (2003) Am J Epidemiol , vol.157 , pp. 364-375
    • Hanley, J.A.1    Negassa, A.2    Deb Edwardes, M.D.3    Forrester, J.E.4
  • 23
    • 0035099161 scopus 로고    scopus 로고
    • A covariance estimator for GEE with improved small-sample properties
    • Mancl LA, DeRouen TA. A covariance estimator for GEE with improved small-sample properties. Biometrics. 2001 ; 57: 126-134
    • (2001) Biometrics , vol.57 , pp. 126-134
    • Mancl, L.A.1    Derouen, T.A.2
  • 24
    • 0032053517 scopus 로고    scopus 로고
    • Comparison of population-averaged and subject-specific approaches for analyzing repeated binary outcomes
    • Hu FB, Goldberg J, Hedeker D, Flay BR, Pentz MA. Comparison of population-averaged and subject-specific approaches for analyzing repeated binary outcomes. Am J Epidemiol. 1998 ; 147: 694-703
    • (1998) Am J Epidemiol , vol.147 , pp. 694-703
    • Hu, F.B.1    Goldberg, J.2    Hedeker, D.3    Flay, B.R.4    Pentz, M.A.5
  • 25
    • 0039396015 scopus 로고    scopus 로고
    • A note on generating correlated binary variables
    • Lunn AD, Davies SJ. A note on generating correlated binary variables. Biometrika. 1998 ; 85: 487-490
    • (1998) Biometrika , vol.85 , pp. 487-490
    • Lunn, A.D.1    Davies, S.J.2
  • 26
    • 0033009264 scopus 로고    scopus 로고
    • Robust regression for clustered data with application to binary responses
    • Preisser JS, Qaqish BF. Robust regression for clustered data with application to binary responses. Biometrics. 1999 ; 55: 574-579
    • (1999) Biometrics , vol.55 , pp. 574-579
    • Preisser, J.S.1    Qaqish, B.F.2
  • 27
    • 64849106873 scopus 로고    scopus 로고
    • A simplified approach to the treatment of uncomplicated hypertension a cluster randomized, controlled trial
    • Feldman RD, Zou GY, Vandervoort MK, Wong CJ, Nelson SA, Feagan BG. A simplified approach to the treatment of uncomplicated hypertension a cluster randomized, controlled trial. Hypertension. 2009 ; 53: 646-653
    • (2009) Hypertension , vol.53 , pp. 646-653
    • Feldman, R.D.1    Zou, G.Y.2    Vandervoort, M.K.3    Wong, C.J.4    Nelson, S.A.5    Feagan, B.G.6
  • 28
    • 24144458327 scopus 로고    scopus 로고
    • Easy SAS calculations for risk or prevalence ratios and differences
    • Spiegelman D, Hertzmark E. Easy SAS calculations for risk or prevalence ratios and differences. Am J Epidemiol. 2005 ; 162: 199-200
    • (2005) Am J Epidemiol , vol.162 , pp. 199-200
    • Spiegelman, D.1    Hertzmark, E.2
  • 29
    • 34250366725 scopus 로고    scopus 로고
    • One relative risk versus two odds ratios: Implications for meta-analyses involving paired and unpaired binary data
    • Zou GY. One relative risk versus two odds ratios: implications for meta-analyses involving paired and unpaired binary data. Clin Trials J Soc Clin Trials. 2007 ; 4: 25-31
    • (2007) Clin Trials J Soc Clin Trials , vol.4 , pp. 25-31
    • Zou, G.Y.1
  • 30
    • 34247505532 scopus 로고    scopus 로고
    • Comparison of subject-specific and population averaged models for count data from cluster-unit intervention trials
    • Young ML, Preisser JS, Qaqish BF, Wolfson M. Comparison of subject-specific and population averaged models for count data from cluster-unit intervention trials. Stat Meth Med Res. 2007 ; 16: 167-184
    • (2007) Stat Meth Med Res , vol.16 , pp. 167-184
    • Young, M.L.1    Preisser, J.S.2    Qaqish, B.F.3    Wolfson, M.4
  • 33
    • 65449125427 scopus 로고    scopus 로고
    • Estimating the effects of potential public health interventions on population disease burden: A step-by-step illustration of causal inference methods
    • Ahern J, Hubbard A, Galea S. Estimating the effects of potential public health interventions on population disease burden: a step-by-step illustration of causal inference methods. Am J Epidemiol. 2009 ; 169: 1140-1147
    • (2009) Am J Epidemiol , vol.169 , pp. 1140-1147
    • Ahern, J.1    Hubbard, A.2    Galea, S.3
  • 34
    • 35548934245 scopus 로고    scopus 로고
    • A simulation study comparing weighted estimating equations with multiple imputation based estimating equations for longitudinal binary data
    • Beunckens C, Sotto C, Molenberghs G. A simulation study comparing weighted estimating equations with multiple imputation based estimating equations for longitudinal binary data. Comput Stat Data Anal. 2008 ; 52: 1533-1548
    • (2008) Comput Stat Data Anal , vol.52 , pp. 1533-1548
    • Beunckens, C.1    Sotto, C.2    Molenberghs, G.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.