메뉴 건너뛰기




Volumn 47, Issue , 2013, Pages 377-404

The digestive tract of Drosophila melanogaster

Author keywords

Absorption; Digestion; Drosophila; Enteric nervous system; Enteroendocrine cells; Gut; Immunity; Intestine

Indexed keywords

CARBOHYDRATE ABSORPTION; DEVELOPMENTAL GENETICS; DIGESTIVE FUNCTION; DIGESTIVE SYSTEM; DROSOPHILA MELANOGASTER; GROWTH REGULATION; IMMUNITY; INSECT GENOME; INTESTINE FLORA; MIDGUT; NEUROBIOLOGY; NONHUMAN; PLASTICITY; PRIORITY JOURNAL; REVIEW; SENESCENCE;

EID: 84888602564     PISSN: 00664197     EISSN: 15452948     Source Type: Book Series    
DOI: 10.1146/annurev-genet-111212-133343     Document Type: Review
Times cited : (346)

References (205)
  • 1
    • 3342907683 scopus 로고
    • Genetic regulation of tissue-specific expression of amylase structural genes in Drosophila melanogaster
    • Abraham I, Doane WW. 1978. Genetic regulation of tissue-specific expression of amylase structural genes in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 75:4446-50
    • (1978) Proc. Natl. Acad. Sci. USA , vol.75 , pp. 4446-4450
    • Abraham, I.1    Doane, W.W.2
  • 2
    • 33845496790 scopus 로고    scopus 로고
    • Erwinia carotovora Evf antagonizes the elimination of bacteria in the gut of Drosophila larvae
    • Acosta Muniz C, Jaillard D, Lemaitre B, Boccard F. 2007. Erwinia carotovora Evf antagonizes the elimination of bacteria in the gut of Drosophila larvae. Cell Microbiol. 9:106-19
    • (2007) Cell Microbiol. , vol.9 , pp. 106-119
    • Acosta Muniz, C.1    Jaillard, D.2    Lemaitre, B.3    Boccard, F.4
  • 3
    • 77955662751 scopus 로고    scopus 로고
    • The leucokinin pathway and its neurons regulate meal size in Drosophila
    • Al-Anzi B, Armand E, Nagamei P, Olszewski M, Sapin V, et al. 2010. The leucokinin pathway and its neurons regulate meal size in Drosophila. Curr. Biol. 20:969-78
    • (2010) Curr. Biol. , vol.20 , pp. 969-978
    • Al-Anzi, B.1    Armand, E.2    Nagamei, P.3    Olszewski, M.4    Sapin, V.5
  • 4
    • 58049218983 scopus 로고    scopus 로고
    • Tissue damage-induced intestinal stem cell division in Drosophila
    • Amcheslavsky A, Jiang J, Ip YT. 2009. Tissue damage-induced intestinal stem cell division in Drosophila. Cell Stem Cell 4:49-61
    • (2009) Cell Stem Cell , vol.4 , pp. 49-61
    • Amcheslavsky, A.1    Jiang, J.2    Ip, Y.T.3
  • 5
    • 0023872497 scopus 로고
    • Identification of the neuropeptide transmitter proc-tolin in Drosophila larvae: Characterization of muscle fiber-specific neuromuscular endings
    • Anderson MS, Halpern ME, Keshishian H. 1988. Identification of the neuropeptide transmitter proc-tolin in Drosophila larvae: characterization of muscle fiber-specific neuromuscular endings. J. Neurosci. 8:242-55
    • (1988) J. Neurosci. , vol.8 , pp. 242-255
    • Anderson, M.S.1    Halpern, M.E.2    Keshishian, H.3
  • 6
    • 0021047459 scopus 로고
    • Fine-structural changes in the midgut of old Drosophila melanogaster
    • Anton-Erxleben F, Miquel J, Philpott DE. 1983. Fine-structural changes in the midgut of old Drosophila melanogaster. Mech. Ageing Dev. 23:265-76
    • (1983) Mech. Ageing Dev. , vol.23 , pp. 265-276
    • Anton-Erxleben, F.1    Miquel, J.2    Philpott, D.E.3
  • 7
    • 0036748295 scopus 로고    scopus 로고
    • The locust frontal ganglion: A central pattern generator network controlling foregut rhythmic motor patterns
    • Ayali A, Zilberstein Y, Cohen N. 2002. The locust frontal ganglion: a central pattern generator network controlling foregut rhythmic motor patterns. J. Exp. Biol. 205:2825-32
    • (2002) J. Exp. Biol. , vol.205 , pp. 2825-2832
    • Ayali, A.1    Zilberstein, Y.2    Cohen, N.3
  • 8
    • 33847216851 scopus 로고    scopus 로고
    • Copper homeostasis in Drosophila by complex interplay of import, storage and behavioral avoidance
    • Balamurugan K, Egli D, Hua H, Rajaram R, Seisenbacher G, et al. 2007. Copper homeostasis in Drosophila by complex interplay of import, storage and behavioral avoidance. EMBO J. 26:1035-44
    • (2007) EMBO J. , vol.26 , pp. 1035-1044
    • Balamurugan, K.1    Egli, D.2    Hua, H.3    Rajaram, R.4    Seisenbacher, G.5
  • 9
    • 84981620167 scopus 로고
    • Recurrent nerve inhibition of protein feeding in the blowfly Phormia regina
    • Belzer WR. 1978. Recurrent nerve inhibition of protein feeding in the blowfly Phormia regina. Physiol. Entomol. 3:259-63
    • (1978) Physiol. Entomol. , vol.3 , pp. 259-263
    • Belzer, W.R.1
  • 10
    • 0022483116 scopus 로고
    • Glucose repression of amylase gene expression in Drosophila melanogaster
    • Benkel BF, Hickey DA. 1986. Glucose repression of amylase gene expression in Drosophila melanogaster. Genetics 114:137-44
    • (1986) Genetics , vol.114 , pp. 137-144
    • Benkel, B.F.1    Hickey, D.A.2
  • 11
    • 79951977041 scopus 로고    scopus 로고
    • Iron depletion in the intestines of Malvolio mutant flies does not occur in the absence of a multicopper oxidase
    • Bettedi L, Aslam MF, Szular J, Mandilaras K, Missirlis F. 2011. Iron depletion in the intestines of Malvolio mutant flies does not occur in the absence of a multicopper oxidase. J. Exp. Biol. 214:971-78
    • (2011) J. Exp. Biol. , vol.214 , pp. 971-978
    • Bettedi, L.1    Aslam, M.F.2    Szular, J.3    Mandilaras, K.4    Missirlis, F.5
  • 12
    • 52949093944 scopus 로고    scopus 로고
    • JNK activity in somatic stem cells causes loss of tissue homeostasis in the aging Drosophila gut
    • Biteau B, Hochmuth CE, Jasper H. 2008. JNK activity in somatic stem cells causes loss of tissue homeostasis in the aging Drosophila gut. Cell Stem Cell 3:442-55
    • (2008) Cell Stem Cell , vol.3 , pp. 442-455
    • Biteau, B.1    Hochmuth, C.E.2    Jasper, H.3
  • 14
    • 0014343666 scopus 로고
    • Myogenic transmission of antral slow waves across the gastroduodenal junction in situ
    • Bortoff A, Davis RS. 1968. Myogenic transmission of antral slow waves across the gastroduodenal junction in situ. Am. J. Physiol. 215:889-97
    • (1968) Am. J. Physiol. , vol.215 , pp. 889-897
    • Bortoff, A.1    Davis, R.S.2
  • 15
    • 84865108178 scopus 로고    scopus 로고
    • Peptido-glycan sensing by the receptor PGRP-LE in the Drosophila gut induces immune responses to infectious bacteria and tolerance to microbiota
    • Bosco-Drayon V, Poidevin M, Boneca IG, Narbonne-Reveau K, Royet J, Charroux B. 2012. Peptido-glycan sensing by the receptor PGRP-LE in the Drosophila gut induces immune responses to infectious bacteria and tolerance to microbiota. Cell Host Microbe 16:153-65
    • (2012) Cell Host Microbe , vol.16 , pp. 153-165
    • Bosco-Drayon, V.1    Poidevin, M.2    Boneca, I.G.3    Narbonne-Reveau, K.4    Royet, J.5    Charroux, B.6
  • 16
    • 84859436684 scopus 로고    scopus 로고
    • Molecular basis of essential amino acid transport from studies of insect nutrient amino acid transporters of the SLC6 family (NAT-SLC6)
    • Boudko DY. 2012. Molecular basis of essential amino acid transport from studies of insect nutrient amino acid transporters of the SLC6 family (NAT-SLC6). J. Insect Physiol. 58:433-49
    • (2012) J. Insect Physiol. , vol.58 , pp. 433-449
    • Boudko, D.Y.1
  • 17
    • 84863870218 scopus 로고    scopus 로고
    • Gut-associated microbes of Drosophila melanogaster
    • Broderick NA, Lemaitre B. 2012. Gut-associated microbes of Drosophila melanogaster. Gut Microbes 3:307-21
    • (2012) Gut Microbes , vol.3 , pp. 307-321
    • Broderick, N.A.1    Lemaitre, B.2
  • 18
    • 0032878110 scopus 로고    scopus 로고
    • IdentificationofaDrosophila brain-gut peptide related to the neuropeptide y family
    • Brown MR, Crim JW, Arata RC, Cai HN, Chun C, Shen P. 1999. IdentificationofaDrosophila brain-gut peptide related to the neuropeptide Y family. Peptides 20:1035-42
    • (1999) Peptides , vol.20 , pp. 1035-1042
    • Brown, M.R.1    Crim, J.W.2    Arata, R.C.3    Cai, H.N.4    Chun, C.5    Shen, P.6
  • 19
    • 41449108530 scopus 로고    scopus 로고
    • Opposing effects of dietary protein and sugar regulate a transcriptional target of Drosophila insulin-like peptide signaling
    • Buch S, Melcher C, Bauer M, Katzenberger J, Pankratz MJ. 2008. Opposing effects of dietary protein and sugar regulate a transcriptional target of Drosophila insulin-like peptide signaling. Cell Metab. 7:321-32
    • (2008) Cell Metab. , vol.7 , pp. 321-332
    • Buch, S.1    Melcher, C.2    Bauer, M.3    Katzenberger, J.4    Pankratz, M.J.5
  • 20
    • 0027241846 scopus 로고
    • Defective glia in the Drosophila brain degeneration mutant drop-dead
    • Buchanan RL, Benzer S. 1993. Defective glia in the Drosophila brain degeneration mutant drop-dead. Neuron 10:839-50
    • (1993) Neuron , vol.10 , pp. 839-850
    • Buchanan, R.L.1    Benzer, S.2
  • 21
    • 70349617469 scopus 로고    scopus 로고
    • Invasive and indigenous microbiota impact intestinal stem cell activity through multiple pathways in Drosophila
    • Buchon N, Broderick NA, Chakrabarti S, Lemaitre B. 2009. Invasive and indigenous microbiota impact intestinal stem cell activity through multiple pathways in Drosophila. Genes Dev. 23:2333-44
    • (2009) Genes Dev. , vol.23 , pp. 2333-2344
    • Buchon, N.1    Broderick, N.A.2    Chakrabarti, S.3    Lemaitre, B.4
  • 22
    • 84882709450 scopus 로고    scopus 로고
    • Gut homeostasis in a microbial world: Insights from Drosophila melanogaster
    • Buchon N, Broderick NA, Lemaitre B. 2013. Gut homeostasis in a microbial world: insights from Drosophila melanogaster. Nat. Rev. Microbiol. 16:615-26
    • (2013) Nat. Rev. Microbiol. , vol.16 , pp. 615-626
    • Buchon, N.1    Broderick, N.A.2    Lemaitre, B.3
  • 23
    • 60649091298 scopus 로고    scopus 로고
    • Drosophila intestinal response to bacterial infection: Activation of host defense and stem cell proliferation
    • Buchon N, Broderick NA, Poidevin M, Pradervand S, Lemaitre B. 2009. Drosophila intestinal response to bacterial infection: activation of host defense and stem cell proliferation. Cell Host Microbe 5:200-11
    • (2009) Cell Host Microbe , vol.5 , pp. 200-211
    • Buchon, N.1    Broderick, N.A.2    Poidevin, M.3    Pradervand, S.4    Lemaitre, B.5
  • 25
    • 0024342864 scopus 로고
    • Altered branching of serotonin-containing neurons in Drosophila mutants unable to synthesize serotonin and dopamine
    • Budnik V, Wu CF, White K. 1989. Altered branching of serotonin-containing neurons in Drosophila mutants unable to synthesize serotonin and dopamine. J. Neurosci. 9:2866-77
    • (1989) J. Neurosci. , vol.9 , pp. 2866-2877
    • Budnik, V.1    Wu, C.F.2    White, K.3
  • 26
    • 75149189286 scopus 로고    scopus 로고
    • Nuclear receptor DHR96 acts as a sentinel for low cholesterol concentrations in Drosophila melanogaster
    • Bujold M, Gopalakrishnan A, Nally E, King-Jones K. 2010. Nuclear receptor DHR96 acts as a sentinel for low cholesterol concentrations in Drosophila melanogaster. Mol. Cell. Biol. 30:793-805
    • (2010) Mol. Cell. Biol. , vol.30 , pp. 793-805
    • Bujold, M.1    Gopalakrishnan, A.2    Nally, E.3    King-Jones, K.4
  • 27
    • 45249097575 scopus 로고    scopus 로고
    • Expression and localisation of the essential copper transporter DmATP7 in Drosophila neuronal and intestinal tissues
    • Burke R, Commons E, Camakaris J. 2008. Expression and localisation of the essential copper transporter DmATP7 in Drosophila neuronal and intestinal tissues. Int. J. Biochem. Cell Biol. 40:1850-60
    • (2008) Int. J. Biochem. Cell Biol. , vol.40 , pp. 1850-1860
    • Burke, R.1    Commons, E.2    Camakaris, J.3
  • 28
    • 0035025796 scopus 로고    scopus 로고
    • Localization of an insulin-like peptide in brains of two flies
    • Cao C, Brown MR. 2001. Localization of an insulin-like peptide in brains of two flies. Cell Tissue Res. 304:317-21
    • (2001) Cell Tissue Res. , vol.304 , pp. 317-321
    • Cao, C.1    Brown, M.R.2
  • 29
    • 0021799620 scopus 로고
    • The Jonah genes: A new multigene family in Drosophila melanogaster
    • Carlson JR, Hogness DS. 1985. The Jonah genes: a new multigene family in Drosophila melanogaster. Dev. Biol. 108:341-54
    • (1985) Dev. Biol. , vol.108 , pp. 341-354
    • Carlson, J.R.1    Hogness, D.S.2
  • 30
    • 28544452399 scopus 로고    scopus 로고
    • Compensatory ingestion upon dietary restriction in Drosophila melanogaster
    • Carvalho GB, Kapahi P, Benzer S. 2005. Compensatory ingestion upon dietary restriction in Drosophila melanogaster. Nat. Methods 2:813-15
    • (2005) Nat. Methods , vol.2 , pp. 813-815
    • Carvalho, G.B.1    Kapahi, P.2    Benzer, S.3
  • 31
    • 80053435147 scopus 로고    scopus 로고
    • Bacterial communities of diverse Drosophila species: Ecological context of a host-microbe model system
    • Chandler JA, Lang JM, Bhatnagar S, Eisen JA, Kopp A. 2011. Bacterial communities of diverse Drosophila species: ecological context of a host-microbe model system. PLoS Genet. 7:e1002272
    • (2011) PLoS Genet. , vol.7
    • Chandler, J.A.1    Lang, J.M.2    Bhatnagar, S.3    Eisen, J.A.4    Kopp, A.5
  • 32
    • 67649878194 scopus 로고    scopus 로고
    • Elimination of plasmatocytes by targeted apoptosis reveals their role in multiple aspects of the Drosophila immune response
    • Charroux B, Royet J. 2009. Elimination of plasmatocytes by targeted apoptosis reveals their role in multiple aspects of the Drosophila immune response. Proc. Natl. Acad. Sci. USA 106:9797-802
    • (2009) Proc. Natl. Acad. Sci. USA , vol.106 , pp. 9797-9802
    • Charroux, B.1    Royet, J.2
  • 33
    • 67650388208 scopus 로고    scopus 로고
    • Pathogenic stimulation of intestinal stem cell response in Drosophila
    • Chatterjee M, Ip YT. 2009. Pathogenic stimulation of intestinal stem cell response in Drosophila. J. Cell. Physiol. 220:664-71
    • (2009) J. Cell. Physiol. , vol.220 , pp. 664-671
    • Chatterjee, M.1    Ip, Y.T.2
  • 34
    • 78650541344 scopus 로고    scopus 로고
    • Participation of the p38 pathway in Drosophila host defense against pathogenic bacteria and fungi
    • Chen J, Xie C, Tian L, Hong L, Wu X, Han J. 2010. Participation of the p38 pathway in Drosophila host defense against pathogenic bacteria and fungi. Proc. Natl. Acad. Sci. USA 107:20774-79
    • (2010) Proc. Natl. Acad. Sci. USA , vol.107 , pp. 20774-20779
    • Chen, J.1    Xie, C.2    Tian, L.3    Hong, L.4    Wu, X.5    Han, J.6
  • 35
    • 34249804498 scopus 로고    scopus 로고
    • Using FlyAtlas to identify better Drosophila melanogaster models of human disease
    • Chintapalli VR, Wang J, Dow JAT. 2007. Using FlyAtlas to identify better Drosophila melanogaster models of human disease. Nat. Genet. 39:715-20
    • (2007) Nat. Genet. , vol.39 , pp. 715-720
    • Chintapalli, V.R.1    Wang, J.2    Dow, J.A.T.3
  • 38
    • 78650866455 scopus 로고    scopus 로고
    • Enteric neurons and systemic signals couple nutritional and reproductive status with intestinal homeostasis
    • Cognigni P, Bailey AP, Miguel-Aliaga I. 2011. Enteric neurons and systemic signals couple nutritional and reproductive status with intestinal homeostasis. Cell Metab. 13:92-104
    • (2011) Cell Metab. , vol.13 , pp. 92-104
    • Cognigni, P.1    Bailey, A.P.2    Miguel-Aliaga, I.3
  • 40
    • 34447517477 scopus 로고    scopus 로고
    • How to innervate a simple gut: Familiar themes and unique aspects in the formation of the insect enteric nervous system
    • Copenhaver PF. 2007. How to innervate a simple gut: familiar themes and unique aspects in the formation of the insect enteric nervous system. Dev. Dyn. 236:1841-64
    • (2007) Dev. Dyn. , vol.236 , pp. 1841-1864
    • Copenhaver, P.F.1
  • 41
    • 84867103410 scopus 로고    scopus 로고
    • Inducible progenitor-derived Wingless regulates adult midgut regeneration in Drosophila
    • Cordero JB, Stefanatos RK, Scopelliti A, Vidal M, Sansom OJ. 2012. Inducible progenitor-derived Wingless regulates adult midgut regeneration in Drosophila. EMBO J. 31:3901-17
    • (2012) EMBO J. , vol.31 , pp. 3901-3917
    • Cordero, J.B.1    Stefanatos, R.K.2    Scopelliti, A.3    Vidal, M.4    Sansom, O.J.5
  • 42
    • 0033760375 scopus 로고    scopus 로고
    • Molecular characterization and evolution of the amylase multigene family of Drosophila ananassae
    • Da Lage JL, Maczkowiak F, Cariou ML. 2000. Molecular characterization and evolution of the amylase multigene family of Drosophila ananassae. J. Mol. Evol. 51:391-403
    • (2000) J. Mol. Evol. , vol.51 , pp. 391-403
    • Da Lage, J.L.1    MacZkowiak, F.2    Cariou, M.L.3
  • 43
    • 84859891069 scopus 로고    scopus 로고
    • Immune response in the barrier epithelia: Lessons from the fruit fly Drosophila melanogaster
    • Davis MM, Engstrom Y. 2012. Immune response in the barrier epithelia: lessons from the fruit fly Drosophila melanogaster. J. Innate Immun. 4:273-83
    • (2012) J. Innate Immun. , vol.4 , pp. 273-283
    • Davis, M.M.1    Engstrom, Y.2
  • 47
    • 59149092947 scopus 로고    scopus 로고
    • Insect ion transport peptides are derived from alternatively spliced genes and differentially expressed in the central and peripheral nervous system
    • Dircksen H. 2009. Insect ion transport peptides are derived from alternatively spliced genes and differentially expressed in the central and peripheral nervous system. J. Exp. Biol. 212:401-12
    • (2009) J. Exp. Biol. , vol.212 , pp. 401-412
    • Dircksen, H.1
  • 48
    • 45349092404 scopus 로고    scopus 로고
    • Ion transport peptide splice forms in central and peripheral neurons throughout postembryogenesis of Drosophila melanogaster
    • Dircksen H, Tesfai LK, Albus C, Nassel DR. 2008. Ion transport peptide splice forms in central and peripheral neurons throughout postembryogenesis of Drosophila melanogaster. J. Comp. Neurol. 509:23-41
    • (2008) J. Comp. Neurol. , vol.509 , pp. 23-41
    • Dircksen, H.1    Tesfai, L.K.2    Albus, C.3    Nassel, D.R.4
  • 49
    • 80054932118 scopus 로고    scopus 로고
    • Lessons from studying insect symbioses
    • Douglas AE. 2011. Lessons from studying insect symbioses. Cell Host Microbe 10:359-67
    • (2011) Cell Host Microbe , vol.10 , pp. 359-367
    • Douglas, A.E.1
  • 50
    • 84957879407 scopus 로고    scopus 로고
    • The alimentary canal
    • ed. RF Chapman, SJ Simpson, AE Douglas Cambridge, UK: Cambridge Univ. Press
    • Douglas AE. 2013. The alimentary canal. In The Insects: Structure and Function, ed. RF Chapman, SJ Simpson, AE Douglas, pp. 46-80. Cambridge, UK: Cambridge Univ. Press
    • (2013) The Insects: Structure and Function , pp. 46-80
    • Douglas, A.E.1
  • 51
    • 3242762348 scopus 로고    scopus 로고
    • The Drosophila phenotype gap: And how to close it
    • Dow JA. 2003. The Drosophila phenotype gap: and how to close it. Brief Funct. Genomic Proteomic 2:121-27
    • (2003) Brief Funct. Genomic Proteomic , vol.2 , pp. 121-127
    • Dow, J.A.1
  • 52
    • 0032905896 scopus 로고    scopus 로고
    • The multifunctional Drosophila melanogaster V-ATPase is encoded by a multigene family
    • Dow JA. 1999. The multifunctional Drosophila melanogaster V-ATPase is encoded by a multigene family. J. Bioenerg. Biomembr. 31:75-83
    • (1999) J. Bioenerg. Biomembr. , vol.31 , pp. 75-83
    • Dow, J.A.1
  • 54
    • 5144223809 scopus 로고    scopus 로고
    • Copper cells and stomach acid secretion in the Drosophila midgut
    • Dubreuil RR. 2004. Copper cells and stomach acid secretion in the Drosophila midgut. Int. J. Biochem. Cell Biol. 36:745-52
    • (2004) Int. J. Biochem. Cell Biol. , vol.36 , pp. 745-752
    • Dubreuil, R.R.1
  • 55
    • 77953715538 scopus 로고    scopus 로고
    • The Drosophila anion exchanger (DAE) lacks a detectable interaction with the spectrin cytoskeleton
    • Dubreuil RR, Das A, Base C, Mazock GH. 2010. The Drosophila anion exchanger (DAE) lacks a detectable interaction with the spectrin cytoskeleton. J. Negat. Results Biomed. 9:5
    • (2010) J. Negat. Results Biomed. , vol.9 , pp. 5
    • Dubreuil, R.R.1    Das, A.2    Base, C.3    Mazock, G.H.4
  • 56
    • 0032007098 scopus 로고    scopus 로고
    • Mutations of alpha spectrin and labial block cuprophilic cell differentiation and acid secretion in the middle midgut of Drosophila larvae
    • Dubreuil RR, Frankel J, Wang P, Howrylak J, Kappil M, Grushko TA. 1998. Mutations of alpha spectrin and labial block cuprophilic cell differentiation and acid secretion in the middle midgut of Drosophila larvae. Dev. Biol. 194:1-11
    • (1998) Dev. Biol. , vol.194 , pp. 1-11
    • Dubreuil, R.R.1    Frankel, J.2    Wang, P.3    Howrylak, J.4    Kappil, M.5    Grushko, T.A.6
  • 57
    • 0034808744 scopus 로고    scopus 로고
    • Differential effects of a labial mutation on the development, structure, and function of stomach acid-secreting cells in Drosophila melanogaster larvae and adults
    • Dubreuil RR, Grushko T, Baumann O. 2001. Differential effects of a labial mutation on the development, structure, and function of stomach acid-secreting cells in Drosophila melanogaster larvae and adults. Cell Tissue Res. 306:167-78
    • (2001) Cell Tissue Res. , vol.306 , pp. 167-178
    • Dubreuil, R.R.1    Grushko, T.2    Baumann, O.3
  • 58
    • 0028674969 scopus 로고
    • Regulation of feeding behavior in adult Drosophila melanogaster varies with feeding regime and nutritional state
    • Edgecomb RS, Harth CE, Schneiderman AM. 1994. Regulation of feeding behavior in adult Drosophila melanogaster varies with feeding regime and nutritional state. J. Exp. Biol. 197:215-35
    • (1994) J. Exp. Biol. , vol.197 , pp. 215-235
    • Edgecomb, R.S.1    Harth, C.E.2    Schneiderman, A.M.3
  • 59
    • 33644780954 scopus 로고    scopus 로고
    • A family knockout of all four Drosophila metallothioneins reveals a central role in copper homeostasis and detoxification
    • Egli D, Yepiskoposyan H, Selvaraj A, Balamurugan K, Rajaram R, et al. 2006. A family knockout of all four Drosophila metallothioneins reveals a central role in copper homeostasis and detoxification. Mol. Cell. Biol. 26:2286-96
    • (2006) Mol. Cell. Biol. , vol.26 , pp. 2286-2296
    • Egli, D.1    Yepiskoposyan, H.2    Selvaraj, A.3    Balamurugan, K.4    Rajaram, R.5
  • 61
    • 0345713188 scopus 로고    scopus 로고
    • The Drosophila glucose transporter gene: CDNA sequence, phylogenetic comparisons, analysis of functional sites and secondary structures
    • Escher SA, Rasmuson-Lestander A. 1999. The Drosophila glucose transporter gene: cDNA sequence, phylogenetic comparisons, analysis of functional sites and secondary structures. Hereditas 130:95-103
    • (1999) Hereditas , vol.130 , pp. 95-103
    • Escher, S.A.1    Rasmuson-Lestander, A.2
  • 62
    • 84875239266 scopus 로고    scopus 로고
    • The complementary facets of epithelial host defenses in the genetic model organism Drosophila melanogaster: From resistance to resilience
    • Ferrandon D. 2012. The complementary facets of epithelial host defenses in the genetic model organism Drosophila melanogaster: from resistance to resilience. Curr. Opin. Immunol. 25:59-70
    • (2012) Curr. Opin. Immunol. , vol.25 , pp. 59-70
    • Ferrandon, D.1
  • 63
    • 0043166471 scopus 로고    scopus 로고
    • Expression of an Aedes aegypti cation-chloride cotransporter and its Drosophila homologues
    • Filippov V, Aimanova K, Gill SS. 2003. Expression of an Aedes aegypti cation-chloride cotransporter and its Drosophila homologues. Insect Mol. Biol. 12:319-31
    • (2003) Insect Mol. Biol. , vol.12 , pp. 319-331
    • Filippov, V.1    Aimanova, K.2    Gill, S.S.3
  • 64
    • 0002019426 scopus 로고
    • Ultrastructure of the copper-accumulating region of the Drosophila larval midgut
    • Filshie BK, Poulson DF, Waterhouse DF. 1971. Ultrastructure of the copper-accumulating region of the Drosophila larval midgut. Tissue Cell 3:77-102
    • (1971) Tissue Cell , vol.3 , pp. 77-102
    • Filshie, B.K.1    Poulson, D.F.2    Waterhouse, D.F.3
  • 65
    • 79955643686 scopus 로고    scopus 로고
    • Drosophila evaluates and learns the nutritional value of sugars
    • Fujita M, Tanimura T. 2011. Drosophila evaluates and learns the nutritional value of sugars. Curr. Biol. 21:751-55
    • (2011) Curr. Biol. , vol.21 , pp. 751-755
    • Fujita, M.1    Tanimura, T.2
  • 66
    • 0015548853 scopus 로고
    • Ultrastructural examination of ageing and radiation-induced life-span shortening in adult Drosophila melanogaster
    • Gartner LP. 1973. Ultrastructural examination of ageing and radiation-induced life-span shortening in adult Drosophila melanogaster. Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med. 23:23-39
    • (1973) Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med. , vol.23 , pp. 23-39
    • Gartner, L.P.1
  • 67
    • 0017129911 scopus 로고
    • Fine-structure of adult Drosophila midgut musculature
    • Gartner LP. 1976. Fine-structure of adult Drosophila midgut musculature. J. Submicroscop. Cytol. Pathol. 8:131-36
    • (1976) J. Submicroscop. Cytol. Pathol. , vol.8 , pp. 131-136
    • Gartner, L.P.1
  • 68
    • 0022356073 scopus 로고
    • The fine structural morphology of the midgut of adult Drosophila: A morphometric analysis
    • Gartner LP. 1985. The fine structural morphology of the midgut of adult Drosophila: a morphometric analysis. Tissue Cell 17:883-88
    • (1985) Tissue Cell , vol.17 , pp. 883-888
    • Gartner, L.P.1
  • 69
    • 0013953909 scopus 로고
    • Utilization of D-amino acids for growth by Drosophila melanogaster larvae
    • Geer BW. 1966. Utilization of D-amino acids for growth by Drosophila melanogaster larvae. J. Nutr. 90:31-39
    • (1966) J. Nutr. , vol.90 , pp. 31-39
    • Geer, B.W.1
  • 70
    • 0013927860 scopus 로고
    • Investigations of a foregut receptor essential to taste threshold regulation in the blowfly
    • Gelperin A. 1966. Investigations of a foregut receptor essential to taste threshold regulation in the blowfly. J. Insect Physiol. 12:829-41
    • (1966) J. Insect Physiol. , vol.12 , pp. 829-841
    • Gelperin, A.1
  • 71
    • 21044440310 scopus 로고    scopus 로고
    • PAT-related amino acid transporters regulate growth via a novel mechanism that does not require bulk transport of amino acids
    • Goberdhan DC, Meredith D, Boyd CA, Wilson C. 2005. PAT-related amino acid transporters regulate growth via a novel mechanism that does not require bulk transport of amino acids. Development 132:2365-75
    • (2005) Development , vol.132 , pp. 2365-2375
    • Goberdhan, D.C.1    Meredith, D.2    Boyd, C.A.3    Wilson, C.4
  • 72
    • 59849096398 scopus 로고    scopus 로고
    • Motor control in a Drosophila taste circuit
    • Gordon MD, Scott K. 2009. Motor control in a Drosophila taste circuit. Neuron 61:373-84
    • (2009) Neuron , vol.61 , pp. 373-384
    • Gordon, M.D.1    Scott, K.2
  • 73
    • 84880027871 scopus 로고    scopus 로고
    • Injury-induced BMP signaling negatively regulates Drosophila midgut homeostasis
    • Guo Z, Driver I, Ohlstein B. 2013. Injury-induced BMP signaling negatively regulates Drosophila midgut homeostasis. J. Cell Biol. 201:945-61
    • (2013) J. Cell Biol. , vol.201 , pp. 945-961
    • Guo, Z.1    Driver, I.2    Ohlstein, B.3
  • 75
    • 27644498442 scopus 로고    scopus 로고
    • A direct role for dual oxidase in Drosophila gut immunity
    • Ha E-M, Oh C-T, Bae Y-S, Lee WJ. 2005. A direct role for dual oxidase in Drosophila gut immunity. Science 310:847-50
    • (2005) Science , vol.310 , pp. 847-850
    • Ha, E.-M.1    Oh, C.-T.2    Bae, Y.-S.3    Lee, W.J.4
  • 76
    • 11244343895 scopus 로고    scopus 로고
    • An antioxidant system required for host protection against gut infection in Drosophila
    • Ha E-M, Oh C-T, Ryu JH, Bae Y-S, Kang S-W, et al. 2005. An antioxidant system required for host protection against gut infection in Drosophila. Dev. Cell 8:125-32
    • (2005) Dev. Cell , vol.8 , pp. 125-132
    • Ha, E.-M.1    Oh, C.-T.2    Ryu, J.H.3    Bae, Y.-S.4    Kang, S.-W.5
  • 77
    • 0019908912 scopus 로고
    • A molecular explanation of frequency-dependent selection in Drosophila
    • Haj-Ahmad Y, Hickey DA. 1982. A molecular explanation of frequency-dependent selection in Drosophila. Nature 299:350-52
    • (1982) Nature , vol.299 , pp. 350-352
    • Haj-Ahmad, Y.1    Hickey, D.A.2
  • 78
    • 77951979229 scopus 로고    scopus 로고
    • Conserved genetic pathways controlling the development of the diffuse endocrine system in vertebrates and Drosophila
    • Hartenstein V, Takashima S, Adams KL. 2010. Conserved genetic pathways controlling the development of the diffuse endocrine system in vertebrates and Drosophila. Gen. Comp. Endocrinol. 166:462-69
    • (2010) Gen. Comp. Endocrinol. , vol.166 , pp. 462-469
    • Hartenstein, V.1    Takashima, S.2    Adams, K.L.3
  • 79
    • 0028126992 scopus 로고
    • Embryonic development of the stomatogastric nervous system in Drosophila
    • Hartenstein V, Tepass U, Gruszynski-Defeo E. 1994. Embryonic development of the stomatogastric nervous system in Drosophila. J. Comp. Neurol. 350:367-81
    • (1994) J. Comp. Neurol. , vol.350 , pp. 367-381
    • Hartenstein, V.1    Tepass, U.2    Gruszynski-Defeo, E.3
  • 80
    • 60549096559 scopus 로고    scopus 로고
    • New insights into peritrophic matrix synthesis, architecture, and function
    • Hegedus D, Erlandson M, Gillott C, Toprak U. 2009. New insights into peritrophic matrix synthesis, architecture, and function. Annu. Rev. Entomol. 54:285-302
    • (2009) Annu. Rev. Entomol. , vol.54 , pp. 285-302
    • Hegedus, D.1    Erlandson, M.2    Gillott, C.3    Toprak, U.4
  • 81
    • 0027439330 scopus 로고
    • Pigment-dispersing hormone-immunoreactive neurons in the nervous system of wild-type Drosophila melanogaster and of several mutants with altered circadian rhyth-micity
    • Helfrichforster C, Homberg U. 1993. Pigment-dispersing hormone-immunoreactive neurons in the nervous system of wild-type Drosophila melanogaster and of several mutants with altered circadian rhyth-micity. J. Comp. Neurol. 337:177-90
    • (1993) J. Comp. Neurol. , vol.337 , pp. 177-190
    • Helfrichforster, C.1    Homberg, U.2
  • 82
    • 80052772365 scopus 로고    scopus 로고
    • Expression of the scavenger receptor class B type i (SR-BI) family in Drosophila melanogaster
    • Herboso L, Talamillo A, Perez C, Barrio R. 2011. Expression of the scavenger receptor class B type I (SR-BI) family in Drosophila melanogaster. Int. J. Dev. Biol. 55:603-11
    • (2011) Int. J. Dev. Biol. , vol.55 , pp. 603-611
    • Herboso, L.1    Talamillo, A.2    Perez, C.3    Barrio, R.4
  • 83
    • 0024241456 scopus 로고
    • DNA rearrangement causes multiple changes in gene expression at the amylase locus in Drosophila melanogaster
    • Hickey DA, Benkel BF, Abukashawa S, Haus S. 1988. DNA rearrangement causes multiple changes in gene expression at the amylase locus in Drosophila melanogaster. Biochem. Genet. 26:757-68
    • (1988) Biochem. Genet. , vol.26 , pp. 757-768
    • Hickey, D.A.1    Benkel, B.F.2    Abukashawa, S.3    Haus, S.4
  • 84
    • 0028208493 scopus 로고
    • Specification of a single cell type by a Drosophila homeotic gene
    • Hoppler S, Bienz M. 1994. Specification of a single cell type by a Drosophila homeotic gene. Cell 76:689-702
    • (1994) Cell , vol.76 , pp. 689-702
    • Hoppler, S.1    Bienz, M.2
  • 85
    • 39649114984 scopus 로고    scopus 로고
    • Multiple tandem gene duplications in a neutral lipase gene cluster in Drosophila
    • Horne I, Haritos VS. 2008. Multiple tandem gene duplications in a neutral lipase gene cluster in Drosophila. Gene 411:27-37
    • (2008) Gene , vol.411 , pp. 27-37
    • Horne, I.1    Haritos, V.S.2
  • 86
    • 67650572853 scopus 로고    scopus 로고
    • Comparative and functional genomics of lipases in holometabolous insects
    • Horne I, Haritos VS, Oakeshott JG. 2009. Comparative and functional genomics of lipases in holometabolous insects. Insect Biochem. Mol. Biol. 39:547-67
    • (2009) Insect Biochem. Mol. Biol. , vol.39 , pp. 547-567
    • Horne, I.1    Haritos, V.S.2    Oakeshott, J.G.3
  • 87
    • 70450212317 scopus 로고    scopus 로고
    • The Drosophila DHR96 nuclear receptor binds cholesterol and regulates cholesterol homeostasis
    • Horner MA, Pardee K, Liu S, King-Jones K, Lajoie G, et al. 2009. The Drosophila DHR96 nuclear receptor binds cholesterol and regulates cholesterol homeostasis. Genes Dev. 23:2711-16
    • (2009) Genes Dev. , vol.23 , pp. 2711-2716
    • Horner, M.A.1    Pardee, K.2    Liu, S.3    King-Jones, K.4    Lajoie, G.5
  • 88
    • 36148978574 scopus 로고    scopus 로고
    • Drosophila Niemann-Pick type C-2 genes control sterol homeostasis and steroid biosynthesis: A model of human neurodegenerative disease
    • Huang X, Warren JT, Buchanan J, Gilbert LI, Scott MP. 2007. Drosophila Niemann-Pick type C-2 genes control sterol homeostasis and steroid biosynthesis: a model of human neurodegenerative disease. Development 134:3733-42
    • (2007) Development , vol.134 , pp. 3733-3742
    • Huang, X.1    Warren, J.T.2    Buchanan, J.3    Gilbert, L.I.4    Scott, M.P.5
  • 89
    • 79951793527 scopus 로고    scopus 로고
    • Niemann-pick C1-like 1 (NPC1L1) protein in intestinal and hepatic cholesterol transport
    • Jia L, Betters JL, Yu L. 2011. Niemann-pick C1-like 1 (NPC1L1) protein in intestinal and hepatic cholesterol transport. Annu. Rev. Physiol. 73:239-59
    • (2011) Annu. Rev. Physiol. , vol.73 , pp. 239-259
    • Jia, L.1    Betters, J.L.2    Yu, L.3
  • 90
    • 80455173895 scopus 로고    scopus 로고
    • Intestinal stem cells in the adult Drosophila midgut
    • Jiang H, Edgar BA. 2011. Intestinal stem cells in the adult Drosophila midgut. Exp. Cell Res. 317:2780-88
    • (2011) Exp. Cell Res. , vol.317 , pp. 2780-2788
    • Jiang, H.1    Edgar, B.A.2
  • 91
    • 67549133157 scopus 로고    scopus 로고
    • Cytokine/Jak/Stat signaling mediates regeneration and homeostasis in the Drosophila midgut
    • Jiang H, Patel PH, Kohlmaier A, Grenley MO, McEwen DG, Edgar BA. 2009. Cytokine/Jak/Stat signaling mediates regeneration and homeostasis in the Drosophila midgut. Cell 137:1343-55
    • (2009) Cell , vol.137 , pp. 1343-1355
    • Jiang, H.1    Patel, P.H.2    Kohlmaier, A.3    Grenley, M.O.4    McEwen, D.G.5    Edgar, B.A.6
  • 93
    • 0035987731 scopus 로고    scopus 로고
    • The effects of three Drosophila melanogaster my-otropins on the frequency of foregut contractions differ
    • Kaminski S, Orlowski E, Berry K, Nichols R. 2002. The effects of three Drosophila melanogaster my-otropins on the frequency of foregut contractions differ. J. Neurogenet. 16:125-34
    • (2002) J. Neurogenet. , vol.16 , pp. 125-134
    • Kaminski, S.1    Orlowski, E.2    Berry, K.3    Nichols, R.4
  • 95
    • 0023896066 scopus 로고
    • Cellular organization and peritrophic membrane formation in the cardia (proventriculus) of Drosophila melanogaster
    • King D. 1988. Cellular organization and peritrophic membrane formation in the cardia (proventriculus) of Drosophila melanogaster. J. Morphol. 196:253-82
    • (1988) J. Morphol. , vol.196 , pp. 253-282
    • King, D.1
  • 96
    • 70349992332 scopus 로고    scopus 로고
    • A neural circuit mechanism integrating motivational state with memory expression in Drosophila
    • Krashes MJ, DasGupta S, Vreede A, White B, Armstrong JD, Waddell S. 2009. A neural circuit mechanism integrating motivational state with memory expression in Drosophila. Cell 139:416-27
    • (2009) Cell , vol.139 , pp. 416-427
    • Krashes, M.J.1    Dasgupta, S.2    Vreede, A.3    White, B.4    Armstrong, J.D.5    Waddell, S.6
  • 97
    • 80053166581 scopus 로고    scopus 로고
    • Genetic evidence for a protective role of the peritrophic matrix against intestinal bacterial infection in Drosophila melanogaster
    • Kuraishi T, Binggeli O, Opota O, Buchon N, Lemaitre B. 2011. Genetic evidence for a protective role of the peritrophic matrix against intestinal bacterial infection in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 108:15966-71
    • (2011) Proc. Natl. Acad. Sci. USA , vol.108 , pp. 15966-15971
    • Kuraishi, T.1    Binggeli, O.2    Opota, O.3    Buchon, N.4    Lemaitre, B.5
  • 98
    • 0026524571 scopus 로고
    • The lysozyme locus in Drosophila melanogaster: Different genes are expressed in midgut and salivary glands
    • Kylsten P, Kimbrell DA, Daffre S, Samakovlis C, Hultmark D. 1992. The lysozyme locus in Drosophila melanogaster: Different genes are expressed in midgut and salivary glands. Mol. Gen. Genet. 232:335-43
    • (1992) Mol. Gen. Genet. , vol.232 , pp. 335-343
    • Kylsten, P.1    Kimbrell, D.A.2    Daffre, S.3    Samakovlis, C.4    Hultmark, D.5
  • 99
    • 77955287219 scopus 로고    scopus 로고
    • Peristalsis in the junction region of the Drosophila larval midgut is modulated by DH31 expressing enteroendocrine cells
    • LaJeunesse DR, Johnson B, Presnell JS, Catignas KK, Zapotoczny G. 2010. Peristalsis in the junction region of the Drosophila larval midgut is modulated by DH31 expressing enteroendocrine cells. BMC Physiol. 10:14
    • (2010) BMC Physiol. , vol.10 , pp. 14
    • Lajeunesse, D.R.1    Johnson, B.2    Presnell, J.S.3    Catignas, K.K.4    Zapotoczny, G.5
  • 100
    • 2942590660 scopus 로고    scopus 로고
    • Hemolymph sugar homeostasis and starvation-induced hyperactivity affected by genetic manipulations of the adipokinetic hormone-encoding gene in Drosophila melanogaster
    • Lee G, Park JH. 2004. Hemolymph sugar homeostasis and starvation-induced hyperactivity affected by genetic manipulations of the adipokinetic hormone-encoding gene in Drosophila melanogaster. Genetics 167:311-23
    • (2004) Genetics , vol.167 , pp. 311-323
    • Lee, G.1    Park, J.H.2
  • 101
    • 84877723813 scopus 로고    scopus 로고
    • Bacterial-derived uracil as a modulator of mucosal immunity and gut-microbe homeostasis in Drosophila
    • Lee KA, Kim SH, Kim EK, Ha EM, You H, et al. 2013. Bacterial-derived uracil as a modulator of mucosal immunity and gut-microbe homeostasis in Drosophila. Cell 153:797-811
    • (2013) Cell , vol.153 , pp. 797-811
    • Lee, K.A.1    Kim, S.H.2    Kim, E.K.3    Ha, E.M.4    You, H.5
  • 102
    • 0030891189 scopus 로고    scopus 로고
    • Peritrophic matrix structure and function
    • Lehane MJ. 1997. Peritrophic matrix structure and function. Annu. Rev. Entomol. 42:525-50
    • (1997) Annu. Rev. Entomol. , vol.42 , pp. 525-550
    • Lehane, M.J.1
  • 105
    • 48649085941 scopus 로고    scopus 로고
    • PIMS modulates immune tolerance by negatively regulating Drosophila innate immune signaling
    • Lhocine N, Ribeiro PS, Buchon N, Wepf A, Wilson R, et al. 2008. PIMS modulates immune tolerance by negatively regulating Drosophila innate immune signaling. Cell Host Microbe 4:147-58
    • (2008) Cell Host Microbe , vol.4 , pp. 147-158
    • Lhocine, N.1    Ribeiro, P.S.2    Buchon, N.3    Wepf, A.4    Wilson, R.5
  • 106
    • 84873838480 scopus 로고    scopus 로고
    • Trachea-derived DPP controls adult midgut homeostasis in Drosophila
    • Li Z, Zhang Y, Han L, Shi L, Lin X. 2013. Trachea-derived DPP controls adult midgut homeostasis in Drosophila. Dev. Cell 24:133-43
    • (2013) Dev. Cell , vol.24 , pp. 133-143
    • Li, Z.1    Zhang, Y.2    Han, L.3    Shi, L.4    Lin, X.5
  • 107
    • 84865764428 scopus 로고    scopus 로고
    • Systematic functional characterization of putative zinc transport genes and identification of zinc toxicosis phenotypes in Drosophila melanogaster
    • Lye JC, Richards CD, Dechen K, Paterson D, de Jonge MD, et al. 2012. Systematic functional characterization of putative zinc transport genes and identification of zinc toxicosis phenotypes in Drosophila melanogaster. J. Exp. Biol. 215:3254-65
    • (2012) J. Exp. Biol. , vol.215 , pp. 3254-3265
    • Lye, J.C.1    Richards, C.D.2    Dechen, K.3    Paterson, D.4    De Jonge, M.D.5
  • 109
    • 84883398166 scopus 로고    scopus 로고
    • Physiological and stem cell compartmentalization within theDrosophila midgut
    • Marianes A, Spradling AC. 2013. Physiological and stem cell compartmentalization within theDrosophila midgut. eLife 2:e00886
    • (2013) ELife , vol.2
    • Marianes, A.1    Spradling, A.C.2
  • 110
    • 0034176584 scopus 로고    scopus 로고
    • Minidiscs encodes a putative amino acid transporter subunit required non-autonomously for imaginal cell proliferation
    • Martin JF, Hersperger E, Simcox A, Shearn A. 2000. minidiscs encodes a putative amino acid transporter subunit required non-autonomously for imaginal cell proliferation. Mech. Dev. 92:155-67
    • (2000) Mech. Dev. , vol.92 , pp. 155-167
    • Martin, J.F.1    Hersperger, E.2    Simcox, A.3    Shearn, A.4
  • 111
    • 74249099740 scopus 로고    scopus 로고
    • A transient niche regulates the specification of Drosophila intestinal stem cells
    • Mathur D, Bost A, Driver I, Ohlstein B. 2010. A transient niche regulates the specification of Drosophila intestinal stem cells. Science 327:210
    • (2010) Science , vol.327 , pp. 210
    • Mathur, D.1    Bost, A.2    Driver, I.3    Ohlstein, B.4
  • 112
    • 0027912517 scopus 로고
    • Spatial and temporal expression identify dromyosuppressin as a brain-gut peptide in Drosophila melanogaster
    • McCormick J, Nichols R. 1993. Spatial and temporal expression identify dromyosuppressin as a brain-gut peptide in Drosophila melanogaster. J. Comp. Neurol. 338:278-88
    • (1993) J. Comp. Neurol. , vol.338 , pp. 278-288
    • McCormick, J.1    Nichols, R.2
  • 113
    • 0035009377 scopus 로고    scopus 로고
    • Evidence that a copper-metallothionein complex is responsible for fluorescence in acid-secreting cells of the Drosophila stomach
    • McNulty M, Puljung M, Jefford G, Dubreuil RR. 2001. Evidence that a copper-metallothionein complex is responsible for fluorescence in acid-secreting cells of the Drosophila stomach. Cell Tissue Res. 304:383-89
    • (2001) Cell Tissue Res. , vol.304 , pp. 383-389
    • McNulty, M.1    Puljung, M.2    Jefford, G.3    Dubreuil, R.R.4
  • 114
    • 34248598052 scopus 로고    scopus 로고
    • Regulation of feeding behaviour and locomotor activity by takeout in Drosophila
    • Meunier N, Belgacem YH, Martin JR. 2007. Regulation of feeding behaviour and locomotor activity by takeout in Drosophila. J. Exp. Biol. 210:1424-34
    • (2007) J. Exp. Biol. , vol.210 , pp. 1424-1434
    • Meunier, N.1    Belgacem, Y.H.2    Martin, J.R.3
  • 115
    • 31444452338 scopus 로고    scopus 로고
    • Evidence that stem cells reside in the adult Drosophila midgut epithelium
    • Micchelli CA, Perrimon N. 2006. Evidence that stem cells reside in the adult Drosophila midgut epithelium. Nature 439:475-79
    • (2006) Nature , vol.439 , pp. 475-479
    • Micchelli, C.A.1    Perrimon, N.2
  • 116
    • 84865137460 scopus 로고    scopus 로고
    • Nerveless and gutsy: Intestinal nutrient sensing from invertebrates to humans
    • Miguel-Aliaga I. 2012. Nerveless and gutsy: intestinal nutrient sensing from invertebrates to humans. Semin. Cell Dev. Biol. 23:614-20
    • (2012) Semin. Cell Dev. Biol. , vol.23 , pp. 614-620
    • Miguel-Aliaga, I.1
  • 117
    • 12344262412 scopus 로고    scopus 로고
    • Segment-specific prevention of pioneer neuron apoptosis by cell-autonomous, postmitotic Hox gene activity
    • Miguel-Aliaga I, Thor S. 2004. Segment-specific prevention of pioneer neuron apoptosis by cell-autonomous, postmitotic Hox gene activity. Development 131:6093-105
    • (2004) Development , vol.131 , pp. 6093-6105
    • Miguel-Aliaga, I.1    Thor, S.2
  • 118
    • 41749101710 scopus 로고    scopus 로고
    • Postmitotic specification of Drosophila insulinergic neurons from pioneer neurons
    • Miguel-Aliaga I, Thor S, Gould AP. 2008. Postmitotic specification of Drosophila insulinergic neurons from pioneer neurons. PLoS Biol. 6:e58
    • (2008) PLoS Biol. , vol.6
    • Miguel-Aliaga, I.1    Thor, S.2    Gould, A.P.3
  • 119
    • 50949091903 scopus 로고    scopus 로고
    • The invertebrate B(0) system transporter, D melanogaster NAT1, has unique D-amino acid affinity and mediates gut and brain functions
    • Miller MM, Popova LB, Meleshkevitch EA, Tran PV, Boudko DY. 2008. The invertebrate B(0) system transporter, D. melanogaster NAT1, has unique D-amino acid affinity and mediates gut and brain functions. Insect Biochem. Mol. Biol. 38:923-31
    • (2008) Insect Biochem. Mol. Biol. , vol.38 , pp. 923-931
    • Miller, M.M.1    Popova, L.B.2    Meleshkevitch, E.A.3    Tran, P.V.4    Boudko, D.Y.5
  • 120
    • 35048859798 scopus 로고    scopus 로고
    • Homeostatic mechanisms for iron storage revealed by genetic manipulations and live imaging of Drosophila ferritin
    • Missirlis F, Kosmidis S, Brody T, Mavrakis M, Holmberg S, et al. 2007. Homeostatic mechanisms for iron storage revealed by genetic manipulations and live imaging of Drosophila ferritin. Genetics 177:89-100
    • (2007) Genetics , vol.177 , pp. 89-100
    • Missirlis, F.1    Kosmidis, S.2    Brody, T.3    Mavrakis, M.4    Holmberg, S.5
  • 121
    • 84870045429 scopus 로고    scopus 로고
    • A fructose receptor functions as a nutrient sensor in the Drosophila brain
    • Miyamoto T, Slone J, Song X, Amrein H. 2012. A fructose receptor functions as a nutrient sensor in the Drosophila brain. Cell 151:1113-25
    • (2012) Cell , vol.151 , pp. 1113-1125
    • Miyamoto, T.1    Slone, J.2    Song, X.3    Amrein, H.4
  • 122
    • 0028264931 scopus 로고
    • Novel tissue units of regional differentiation in the gut epithelium of Drosophila, as revealed by P-element-mediated detection of enhancer
    • Murakami R, Shigenaga A, Kawano E, Matsumoto A, Yamaoka I, Tanimura T. 1994. Novel tissue units of regional differentiation in the gut epithelium of Drosophila, as revealed by P-element-mediated detection of enhancer. Rouxs Arch. Dev. Biol. 203:243-49
    • (1994) Rouxs Arch. Dev. Biol. , vol.203 , pp. 243-249
    • Murakami, R.1    Shigenaga, A.2    Kawano, E.3    Matsumoto, A.4    Yamaoka, I.5    Tanimura, T.6
  • 123
    • 0035005203 scopus 로고    scopus 로고
    • Ultrastructure of the hindgut of Drosophila larvae, with special reference to the domains identified by specific gene expression patterns
    • Murakami R, Shiotsuki Y. 2001. Ultrastructure of the hindgut of Drosophila larvae, with special reference to the domains identified by specific gene expression patterns. J. Morphol. 248:144-50
    • (2001) J. Morphol. , vol.248 , pp. 144-150
    • Murakami, R.1    Shiotsuki, Y.2
  • 125
    • 84856589324 scopus 로고    scopus 로고
    • + transport by the gut of Drosophila melanogaster larvae
    • + transport by the gut of Drosophila melanogaster larvae. J. Exp. Biol. 215:461-70
    • (2012) J. Exp. Biol. , vol.215 , pp. 461-470
    • Naikkhwah, W.1    O'Donnell, M.J.2
  • 126
    • 25144456045 scopus 로고    scopus 로고
    • Functional specification in the Drosophila endoderm
    • Nakagoshi H. 2005. Functional specification in the Drosophila endoderm. Dev. Growth Differ. 47:383-92
    • (2005) Dev. Growth Differ. , vol.47 , pp. 383-392
    • Nakagoshi, H.1
  • 127
    • 0027417695 scopus 로고
    • Pigment-dispersing hormone-like peptide in the nervous system of the flies Phormia and Drosophila: Immunocytochemistry and partial characterization
    • Nassel DR, Shiga S, Mohrherr CJ, Rao KR. 1993. Pigment-dispersing hormone-like peptide in the nervous system of the flies Phormia and Drosophila: immunocytochemistry and partial characterization. J. Comp. Neurol. 331:183-98
    • (1993) J. Comp. Neurol. , vol.331 , pp. 183-198
    • Nassel, D.R.1    Shiga, S.2    Mohrherr, C.J.3    Rao, K.R.4
  • 129
    • 84864807751 scopus 로고    scopus 로고
    • Tissue-and ligand-specific sensing of gramnegative infection in Drosophila by PGRP-LC isoforms and PGRP-LE
    • Neyen C, Poidevin M, Roussel A, Lemaitre B. 2012. Tissue-and ligand-specific sensing of gramnegative infection in Drosophila by PGRP-LC isoforms and PGRP-LE. J. Immunol. 189:1886-97
    • (2012) J. Immunol. , vol.189 , pp. 1886-1897
    • Neyen, C.1    Poidevin, M.2    Roussel, A.3    Lemaitre, B.4
  • 130
    • 0036019396 scopus 로고    scopus 로고
    • Myotropic peptides in Drosophila melanogaster and the genes that encode them
    • Nichols R, Bendena WG, Tobe SS. 2002. Myotropic peptides in Drosophila melanogaster and the genes that encode them. J. Neurogenet. 16:1-28
    • (2002) J. Neurogenet. , vol.16 , pp. 1-28
    • Nichols, R.1    Bendena, W.G.2    Tobe, S.S.3
  • 131
    • 79955084783 scopus 로고    scopus 로고
    • The fruit fly Drosophila melanogaster as a model system to study cholesterol metabolism and homeostasis
    • Niwa R, Niwa YS. 2011. The fruit fly Drosophila melanogaster as a model system to study cholesterol metabolism and homeostasis. Cholesterol 2011:176802
    • (2011) Cholesterol , vol.2011 , pp. 176802
    • Niwa, R.1    Niwa, Y.S.2
  • 132
    • 34248666410 scopus 로고    scopus 로고
    • Copper homeostasis gene discovery in Drosophila melanogaster
    • Norgate M, Southon A, Zou S, Zhan M, Sun Y, et al. 2007. Copper homeostasis gene discovery in Drosophila melanogaster. Biometals 20:683-97
    • (2007) Biometals , vol.20 , pp. 683-697
    • Norgate, M.1    Southon, A.2    Zou, S.3    Zhan, M.4    Sun, Y.5
  • 133
    • 80155123827 scopus 로고    scopus 로고
    • Altered modes of stem cell division drive adaptive intestinal growth
    • O'Brien LE, Soliman SS, Li X, Bilder D. 2011. Altered modes of stem cell division drive adaptive intestinal growth. Cell 147:603-14
    • (2011) Cell , vol.147 , pp. 603-614
    • O'Brien, L.E.1    Soliman, S.S.2    Li, X.3    Bilder, D.4
  • 134
    • 0242505385 scopus 로고    scopus 로고
    • Separate control of anion and cation transport in Malpighian tubules of Drosophila melanogaster
    • O'Donnell MJ, Dow JA, Huesmann GR, Tublitz NJ, Maddrell SH. 1996. Separate control of anion and cation transport in Malpighian tubules of Drosophila melanogaster. J. Exp. Biol. 199:1163-75
    • (1996) J. Exp. Biol. , vol.199 , pp. 1163-1175
    • O'Donnell, M.J.1    Dow, J.A.2    Huesmann, G.R.3    Tublitz, N.J.4    Maddrell, S.H.5
  • 135
    • 33847168133 scopus 로고    scopus 로고
    • Multipotent Drosophila intestinal stem cells specify daughter cell fates by differential notch signaling
    • Ohlstein B, Spradling A. 2007. Multipotent Drosophila intestinal stem cells specify daughter cell fates by differential notch signaling. Science 315:988-92
    • (2007) Science , vol.315 , pp. 988-992
    • Ohlstein, B.1    Spradling, A.2
  • 136
    • 31444444485 scopus 로고    scopus 로고
    • The adult Drosophila posterior midgut is maintained by pluripotent stem cells
    • Ohlstein B, Spradling AC. 2006. The adult Drosophila posterior midgut is maintained by pluripotent stem cells. Nature 439:470-74
    • (2006) Nature , vol.439 , pp. 470-474
    • Ohlstein, B.1    Spradling, A.C.2
  • 137
    • 33750812185 scopus 로고    scopus 로고
    • GATAe-dependent and-independent expressions of genes in the differentiated endodermal midgut of Drosophila
    • Okumura T, Tajiri R, Kojima T, Saigo K, Murakami R. 2007. GATAe-dependent and-independent expressions of genes in the differentiated endodermal midgut of Drosophila. Gene Expr. Patterns 7:178-86
    • (2007) Gene Expr. Patterns , vol.7 , pp. 178-186
    • Okumura, T.1    Tajiri, R.2    Kojima, T.3    Saigo, K.4    Murakami, R.5
  • 138
    • 84871703799 scopus 로고    scopus 로고
    • Autocrine and paracrine unpaired signaling regulate intestinal stem cell maintenance and division
    • Osman D, Buchon N, Chakrabarti S, Huang YT, Su WC, et al. 2012. Autocrine and paracrine unpaired signaling regulate intestinal stem cell maintenance and division. J. Cell Sci. 125(Pt. 4):5944-49
    • (2012) J. Cell Sci. , vol.125 , Issue.PART 4 , pp. 5944-5949
    • Osman, D.1    Buchon, N.2    Chakrabarti, S.3    Huang, Y.T.4    Su, W.C.5
  • 139
    • 84864614812 scopus 로고    scopus 로고
    • Lipoproteins in Drosophila melanogaster: Assembly, function, and influence on tissue lipid composition
    • Palm W, Sampaio JL, Brankatschk M, Carvalho M, Mahmoud A, et al. 2012. Lipoproteins in Drosophila melanogaster: assembly, function, and influence on tissue lipid composition. PLoS Genet. 8:e1002828
    • (2012) PLoS Genet. , vol.8
    • Palm, W.1    Sampaio, J.L.2    Brankatschk, M.3    Carvalho, M.4    Mahmoud, A.5
  • 140
    • 35548959487 scopus 로고    scopus 로고
    • The drosulfakinin 0 (DSK 0) peptide encoded in the conserved Dsk gene affects adult Drosophila melanogaster crop contractions
    • Palmer GC, Tran T, Duttlinger A, Nichols R. 2007. The drosulfakinin 0 (DSK 0) peptide encoded in the conserved Dsk gene affects adult Drosophila melanogaster crop contractions. J. Insect Physiol. 53:1125-33
    • (2007) J. Insect Physiol. , vol.53 , pp. 1125-1133
    • Palmer, G.C.1    Tran, T.2    Duttlinger, A.3    Nichols, R.4
  • 141
    • 82055177179 scopus 로고    scopus 로고
    • Negative regulation by amidase PGRPs shapes the Drosophila antibacterial response and protects the fly from innocuous infection
    • Paredes JC, Welchman DP, Poidevin M, Lemaitre B. 2011. Negative regulation by amidase PGRPs shapes the Drosophila antibacterial response and protects the fly from innocuous infection. Immunity 35:770-79
    • (2011) Immunity , vol.35 , pp. 770-779
    • Paredes, J.C.1    Welchman, D.P.2    Poidevin, M.3    Lemaitre, B.4
  • 142
    • 83355168712 scopus 로고    scopus 로고
    • Heterogeneous expression of Drosophila gustatory receptors in enteroen-docrine cells
    • Park JH, Kwon JY. 2011. Heterogeneous expression of Drosophila gustatory receptors in enteroen-docrine cells. PLoS ONE 6:e29022
    • (2011) PLoS ONE , vol.6
    • Park, J.H.1    Kwon, J.Y.2
  • 144
    • 0036127946 scopus 로고    scopus 로고
    • Drosophila melanogaster flatline encodes a myotropin orthologue to Manduca sexta allatostatin
    • Price MD, Merte J, Nichols R, Koladich PM, Tobe SS, Bendena WG. 2002. Drosophila melanogaster flatline encodes a myotropin orthologue to Manduca sexta allatostatin. Peptides 23:787-94
    • (2002) Peptides , vol.23 , pp. 787-794
    • Price, M.D.1    Merte, J.2    Nichols, R.3    Koladich, P.M.4    Tobe, S.S.5    Bendena, W.G.6
  • 145
    • 0037064075 scopus 로고    scopus 로고
    • Systematic G-protein-coupled receptor analysis in Drosophila melanogaster identifies a leucokinin receptor with novel roles
    • Radford JC, Davies SA, Dow JA. 2002. Systematic G-protein-coupled receptor analysis in Drosophila melanogaster identifies a leucokinin receptor with novel roles. J. Biol. Chem. 277:38810-17
    • (2002) J. Biol. Chem. , vol.277 , pp. 38810-38817
    • Radford, J.C.1    Davies, S.A.2    Dow, J.A.3
  • 146
    • 77954311839 scopus 로고    scopus 로고
    • Neuroanatomy and neurophysiology of the locust hypocerebral ganglion
    • Rand D, Ayali A. 2010. Neuroanatomy and neurophysiology of the locust hypocerebral ganglion. J. Insect Physiol. 56:884-92
    • (2010) J. Insect Physiol. , vol.56 , pp. 884-892
    • Rand, D.1    Ayali, A.2
  • 148
    • 34547440528 scopus 로고    scopus 로고
    • Increased internal and external bacterial load during Drosophila aging without life-span trade-off
    • Ren C, Webster P, Finkel SE, Tower J. 2007. Increased internal and external bacterial load during Drosophila aging without life-span trade-off. Cell Metab. 6:144-52
    • (2007) Cell Metab. , vol.6 , pp. 144-152
    • Ren, C.1    Webster, P.2    Finkel, S.E.3    Tower, J.4
  • 149
    • 80455143200 scopus 로고    scopus 로고
    • Modulation of longevity and tissue homeostasis by the Drosophila PGC-1 homolog
    • Rera M, Bahadorani S, Cho J, Koehler CL, Ulgherait M, et al. 2011. Modulation of longevity and tissue homeostasis by the Drosophila PGC-1 homolog. Cell Metab. 14:623-34
    • (2011) Cell Metab. , vol.14 , pp. 623-634
    • Rera, M.1    Bahadorani, S.2    Cho, J.3    Koehler, C.L.4    Ulgherait, M.5
  • 150
    • 84871830937 scopus 로고    scopus 로고
    • Intestinal barrier dysfunction links metabolic and inflammatory markers of aging to death in Drosophila
    • Rera M, Clark RI, Walker DW. 2012. Intestinal barrier dysfunction links metabolic and inflammatory markers of aging to death in Drosophila. Proc. Natl. Acad. Sci. USA 109:21528-33
    • (2012) Proc. Natl. Acad. Sci. USA , vol.109 , pp. 21528-21533
    • Rera, M.1    Clark, R.I.2    Walker, D.W.3
  • 151
    • 66949114902 scopus 로고    scopus 로고
    • Drosophila expresses a CD98 transporter with an evolutionarily conserved structure and amino acid-transport properties
    • Reynolds B, Roversi P, Laynes R, Kazi S, Boyd CA, Goberdhan DC. 2009. Drosophila expresses a CD98 transporter with an evolutionarily conserved structure and amino acid-transport properties. Biochem. J. 420:363-72
    • (2009) Biochem. J. , vol.420 , pp. 363-372
    • Reynolds, B.1    Roversi, P.2    Laynes, R.3    Kazi, S.4    Boyd, C.A.5    Goberdhan, D.C.6
  • 152
    • 77953856011 scopus 로고    scopus 로고
    • Sex peptide receptor and neuronal TORS6K signaling modulate nutrient balancing in Drosophila
    • Ribeiro C, Dickson BJ. 2010. Sex peptide receptor and neuronal TORS6K signaling modulate nutrient balancing in Drosophila. Curr. Biol. 20:1000-5
    • (2010) Curr. Biol. , vol.20 , pp. 1000-1005
    • Ribeiro, C.1    Dickson, B.J.2
  • 153
    • 84860643186 scopus 로고    scopus 로고
    • Impact of the resident microbiota on the nutritional phenotype of Drosophila melanogaster
    • Ridley EV, Wong AC, Westmiller S, Douglas AE. 2012. Impact of the resident microbiota on the nutritional phenotype of Drosophila melanogaster. PLoS ONE 7:e36765
    • (2012) PLoS ONE , vol.7
    • Ridley, E.V.1    Wong, A.C.2    Westmiller, S.3    Douglas, A.E.4
  • 154
    • 84981837124 scopus 로고
    • The secretory activity of the proventriculus of Drosophila melanogaster
    • Rizki TM. 1956. The secretory activity of the proventriculus of Drosophila melanogaster. J. Exp. Zool. 131:203-21
    • (1956) J. Exp. Zool. , vol.131 , pp. 203-221
    • Rizki, T.M.1
  • 155
    • 0032985832 scopus 로고    scopus 로고
    • Haemolymph sugars and the control of the proventriculus in the honey bee Apis mellifera
    • Roces F, Blatt J. 1999. Haemolymph sugars and the control of the proventriculus in the honey bee Apis mellifera. J. Insect Physiol. 45:221-29
    • (1999) J. Insect Physiol. , vol.45 , pp. 221-229
    • Roces, F.1    Blatt, J.2
  • 156
    • 0031671716 scopus 로고    scopus 로고
    • The opt1 gene of Drosophila melanogaster encodes a proton-dependent dipeptide transporter
    • Roman G, Meller V, Wu KH, Davis RL. 1998. The opt1 gene of Drosophila melanogaster encodes a proton-dependent dipeptide transporter. Am. J. Physiol. 275:C857-69
    • (1998) Am. J. Physiol. , vol.275
    • Roman, G.1    Meller, V.2    Wu, K.H.3    Davis, R.L.4
  • 157
    • 0037472685 scopus 로고    scopus 로고
    • Serine proteases and their homologs in the Drosophila melanogaster genome: An initial analysis of sequence conservation and phylogenetic relationships
    • Ross J, Jiang H, Kanost MR, Wang Y. 2003. Serine proteases and their homologs in the Drosophila melanogaster genome: an initial analysis of sequence conservation and phylogenetic relationships. Gene 304:117-31
    • (2003) Gene , vol.304 , pp. 117-131
    • Ross, J.1    Jiang, H.2    Kanost, M.R.3    Wang, Y.4
  • 158
    • 38949153861 scopus 로고    scopus 로고
    • Innate immune homeostasis by the homeobox gene caudal and commensal-gut mutualism in Drosophila
    • Ryu JH, Kim SH, Lee HY, Bai JY, Nam YD, et al. 2008. Innate immune homeostasis by the homeobox gene caudal and commensal-gut mutualism in Drosophila. Science 319:777-82
    • (2008) Science , vol.319 , pp. 777-782
    • Ryu, J.H.1    Kim, S.H.2    Lee, H.Y.3    Bai, J.Y.4    Nam, Y.D.5
  • 159
    • 10744230355 scopus 로고    scopus 로고
    • The homeobox gene Caudal regulates constitutive local expression of antimicrobial peptide genes in Drosophila epithelia
    • Ryu JH, Nam K-B, Oh C-T, Nam H-J, Kim S-H, et al. 2004. The homeobox gene Caudal regulates constitutive local expression of antimicrobial peptide genes in Drosophila epithelia. Mol. Cell. Biol. 24:172-85
    • (2004) Mol. Cell. Biol. , vol.24 , pp. 172-185
    • Ryu, J.H.1    Nam, K.-B.2    Oh, C.-T.3    Nam, H.-J.4    Kim, S.-H.5
  • 160
    • 0002129685 scopus 로고
    • The quantitative nutritional requirements of Drosophila melanogaster
    • Sang JH. 1956. The quantitative nutritional requirements of Drosophila melanogaster. J. Exp. Biol. 33:45-72
    • (1956) J. Exp. Biol. , vol.33 , pp. 45-72
    • Sang, J.H.1
  • 161
    • 0034625249 scopus 로고    scopus 로고
    • The Drosophila takeout gene is a novel molecular link between circadian rhythms and feeding behavior
    • Sarov-Blat L, So WV, Liu L, Rosbash M. 2000. The Drosophila takeout gene is a novel molecular link between circadian rhythms and feeding behavior. Cell 101:647-56
    • (2000) Cell , vol.101 , pp. 647-656
    • Sarov-Blat, L.1    So, W.V.2    Liu, L.3    Rosbash, M.4
  • 162
    • 17444417126 scopus 로고    scopus 로고
    • Metal-responsive transcription factor (MTF-1) handles both extremes, copper load and copper starvation, by activating different genes
    • Selvaraj A, Balamurugan K, Yepiskoposyan H, Zhou H, Egli D, et al. 2005. Metal-responsive transcription factor (MTF-1) handles both extremes, copper load and copper starvation, by activating different genes. Genes Dev. 19:891-6
    • (2005) Genes Dev. , vol.19 , pp. 891-896
    • Selvaraj, A.1    Balamurugan, K.2    Yepiskoposyan, H.3    Zhou, H.4    Egli, D.5
  • 163
    • 31544441655 scopus 로고    scopus 로고
    • Electrogenic H+ transport and pH gradients generated by a V-H+-ATPase in the isolated perfused larval Drosophila midgut
    • Shanbhag S, Tripathi S. 2005. Electrogenic H+ transport and pH gradients generated by a V-H+-ATPase in the isolated perfused larval Drosophila midgut. J. Membr. Biol. 206:61-72
    • (2005) J. Membr. Biol. , vol.206 , pp. 61-72
    • Shanbhag, S.1    Tripathi, S.2
  • 164
    • 66449098226 scopus 로고    scopus 로고
    • Epithelial ultrastructure and cellular mechanisms of acid and base transport in the Drosophila midgut
    • Shanbhag S, Tripathi S. 2009. Epithelial ultrastructure and cellular mechanisms of acid and base transport in the Drosophila midgut. J. Exp. Biol. 212:1731-44
    • (2009) J. Exp. Biol. , vol.212 , pp. 1731-1744
    • Shanbhag, S.1    Tripathi, S.2
  • 165
    • 80555143077 scopus 로고    scopus 로고
    • Drosophila microbiome modulates host developmental and metabolic homeostasis via insulin signaling
    • Shin SC, Kim SH, You H, Kim B, Kim AC, et al. 2011. Drosophila microbiome modulates host developmental and metabolic homeostasis via insulin signaling. Science 334:670-4
    • (2011) Science , vol.334 , pp. 670-674
    • Shin, S.C.1    Kim, S.H.2    You, H.3    Kim, B.4    Kim, A.C.5
  • 166
    • 84855422546 scopus 로고    scopus 로고
    • Coordination of triacylglycerol and cholesterol homeostasis by DHR96 and the Drosophila LipA homolog magro
    • Sieber MH, Thummel CS. 2012. Coordination of triacylglycerol and cholesterol homeostasis by DHR96 and the Drosophila LipA homolog magro. Cell Metab. 15:122-7
    • (2012) Cell Metab. , vol.15 , pp. 122-127
    • Sieber, M.H.1    Thummel, C.S.2
  • 167
    • 0004236886 scopus 로고    scopus 로고
    • Nutrition
    • ed. RF Chapman, SJ Simpson, AE Douglas Cambridge, UK: Cambridge Univ. Press
    • Simpson SJ, Douglas AE 2013. Nutrition. In The Insects: Structure and Function, ed. RF Chapman, SJ Simpson, AE Douglas, pp. 81-106 Cambridge, UK: Cambridge Univ. Press
    • (2013) The Insects: Structure and Function , pp. 81-106
    • Simpson, S.J.1    Douglas, A.E.2
  • 168
    • 84867392698 scopus 로고    scopus 로고
    • Single nucleotide in the MTF-1 binding site can determine metal-specific transcription activation
    • Sims HI, Chirn GW, Marr MT 2nd. 2012. Single nucleotide in the MTF-1 binding site can determine metal-specific transcription activation. Proc. Natl. Acad. Sci. USA 109:16516-21
    • (2012) Proc. Natl. Acad. Sci. USA , vol.109 , pp. 16516-16521
    • Sims, H.I.1    Chirn, G.W.2    Marr II, M.T.3
  • 169
    • 79953649222 scopus 로고    scopus 로고
    • The adult Drosophila gastric and stomach organs are maintained by a multipotent stem cell pool at the foregut/midgut junction in the cardia (proventriculus)
    • Singh SR, Zeng X, Zheng Z, Hou SX. 2011. The adult Drosophila gastric and stomach organs are maintained by a multipotent stem cell pool at the foregut/midgut junction in the cardia (proventriculus). Cell Cycle 10:1109-20
    • (2011) Cell Cycle , vol.10 , pp. 1109-1120
    • Singh, S.R.1    Zeng, X.2    Zheng, Z.3    Hou, S.X.4
  • 170
    • 42949116074 scopus 로고    scopus 로고
    • Anatomy of the stomatogastric nervous system associated with the foregut in Drosophila melanogaster and Calliphora vicina third instar larvae
    • Spiess R, Schoofs A, Heinzel HG. 2008. Anatomy of the stomatogastric nervous system associated with the foregut in Drosophila melanogaster and Calliphora vicina third instar larvae. J. Morphol. 269:272-82
    • (2008) J. Morphol. , vol.269 , pp. 272-282
    • Spiess, R.1    Schoofs, A.2    Heinzel, H.G.3
  • 171
    • 15544378302 scopus 로고    scopus 로고
    • No organ left behind: Tales of gut development and evolution
    • Stainier DY. 2005. No organ left behind: tales of gut development and evolution. Science 307:1902-4
    • (2005) Science , vol.307 , pp. 1902-1904
    • Stainier, D.Y.1
  • 172
    • 84873843848 scopus 로고    scopus 로고
    • The adult dipteran crop: A unique and overlooked organ
    • Stoffolano JG Jr, Haselton AT. 2013. The adult dipteran crop: a unique and overlooked organ. Annu. Rev. Entomol. 58:205-25
    • (2013) Annu. Rev. Entomol. , vol.58 , pp. 205-225
    • Stoffolano Jr., J.G.1    Haselton, A.T.2
  • 174
    • 80055094597 scopus 로고    scopus 로고
    • Quiescent gastric stem cells maintain the adult Drosophila stomach
    • Strand M, Micchelli CA. 2011. Quiescent gastric stem cells maintain the adult Drosophila stomach. Proc. Natl. Acad. Sci. USA 108:17696-701
    • (2011) Proc. Natl. Acad. Sci. USA , vol.108 , pp. 17696-17701
    • Strand, M.1    Micchelli, C.A.2
  • 175
    • 73549119681 scopus 로고    scopus 로고
    • Developmental and functional studies of the SLC12 gene family members from Drosophila melanogaster
    • Sun Q, Tian E, Turner RJ, Ten Hagen KG. 2010. Developmental and functional studies of the SLC12 gene family members from Drosophila melanogaster. Am. J. Physiol. Cell Physiol. 298:C26-37
    • (2010) Am. J. Physiol. Cell Physiol. , vol.298
    • Sun, Q.1    Tian, E.2    Turner, R.J.3    Ten Hagen, K.G.4
  • 176
    • 52449095232 scopus 로고    scopus 로고
    • A potential role for Drosophila mucins in development and physiology
    • Syed ZA, Hard T, Uv A, van Dijk-Hard IF. 2008. A potential role for Drosophila mucins in development and physiology. PLoS ONE 3:e3041
    • (2008) PLoS ONE , vol.3
    • Syed, Z.A.1    Hard, T.2    Uv, A.3    Van Dijk-Hard, I.F.4
  • 177
    • 79954997501 scopus 로고    scopus 로고
    • Development of the Drosophila entero-endocrine lineage and its specification by the Notch signaling pathway
    • Takashima S, Adams KL, Ortiz PA, Ying CT, Moridzadeh R, et al. 2011. Development of the Drosophila entero-endocrine lineage and its specification by the Notch signaling pathway. Dev. Biol. 353:161-72
    • (2011) Dev. Biol. , vol.353 , pp. 161-172
    • Takashima, S.1    Adams, K.L.2    Ortiz, P.A.3    Ying, C.T.4    Moridzadeh, R.5
  • 178
    • 84861692043 scopus 로고    scopus 로고
    • Genetic control of intestinal stem cell specification and development: A comparative view
    • Takashima S, Hartenstein V. 2012. Genetic control of intestinal stem cell specification and development: a comparative view. Stem Cell Rev. 8:597-608
    • (2012) Stem Cell Rev. , vol.8 , pp. 597-608
    • Takashima, S.1    Hartenstein, V.2
  • 179
  • 181
  • 182
    • 84861454731 scopus 로고    scopus 로고
    • Properties and secretory mechanism of Musca domestica digestive chymotrypsin and its relation with Drosophila melanogaster homologs
    • Tamaki FK, Padilha MH, Pimentel AC, Ribeiro AF, Terra WR. 2012. Properties and secretory mechanism of Musca domestica digestive chymotrypsin and its relation with Drosophila melanogaster homologs. Insect Biochem. Mol. Biol. 42:482-90
    • (2012) Insect Biochem. Mol. Biol. , vol.42 , pp. 482-490
    • Tamaki, F.K.1    Padilha, M.H.2    Pimentel, A.C.3    Ribeiro, A.F.4    Terra, W.R.5
  • 183
    • 84871860130 scopus 로고    scopus 로고
    • Ferritin is the key to dietary iron absorption and tissue iron detoxification in Drosophila melanogaster
    • Tang X, Zhou B. 2013. Ferritin is the key to dietary iron absorption and tissue iron detoxification in Drosophila melanogaster. FASEB J. 27:288-98
    • (2013) FASEB J. , vol.27 , pp. 288-298
    • Tang, X.1    Zhou, B.2
  • 184
    • 0001013525 scopus 로고
    • Evolution of digestive systems of insects
    • Terra WR. 1990. Evolution of digestive systems of insects. Annu. Rev. Entomol. 35:181-200
    • (1990) Annu. Rev. Entomol. , vol.35 , pp. 181-200
    • Terra, W.R.1
  • 185
    • 0035378362 scopus 로고    scopus 로고
    • The origin and functions of the insect peritrophic membrane and peritrophic gel
    • Terra WR. 2001. The origin and functions of the insect peritrophic membrane and peritrophic gel. Arch. Insect Biochem. Physiol. 47:47-61
    • (2001) Arch. Insect Biochem. Physiol. , vol.47 , pp. 47-61
    • Terra, W.R.1
  • 186
    • 0001077802 scopus 로고
    • Distribution of digestive enzymes among the endo-and ectoperitrophic spaces and midgut cells of Rhynchosciara and its physiological significance
    • Terra WR, Ferreira AC, de Bianchi AG. 1979. Distribution of digestive enzymes among the endo-and ectoperitrophic spaces and midgut cells of Rhynchosciara and its physiological significance. J. Insect Physiol. 25:487-94
    • (1979) J. Insect Physiol. , vol.25 , pp. 487-494
    • Terra, W.R.1    Ferreira, A.C.2    De Bianchi, A.G.3
  • 187
    • 0026855487 scopus 로고
    • Tissue-specific and dietary control of alpha-amylase gene expression in the adult midgut of Drosophila melanogaster
    • Thompson DB, Treat-Clemons LG, Doane WW. 1992. Tissue-specific and dietary control of alpha-amylase gene expression in the adult midgut of Drosophila melanogaster. J. Exp. Zool. 262:122-34
    • (1992) J. Exp. Zool. , vol.262 , pp. 122-134
    • Thompson, D.B.1    Treat-Clemons, L.G.2    Doane, W.W.3
  • 188
    • 0000473179 scopus 로고
    • Glucose absorption in the cockroach
    • Treherne JE. 1957. Glucose absorption in the cockroach. J. Exp. Biol. 34:478-85
    • (1957) J. Exp. Biol. , vol.34 , pp. 478-485
    • Treherne, J.E.1
  • 189
    • 0033638404 scopus 로고    scopus 로고
    • Tissue-specific inducible expression of antimicrobial peptide genes in Drosophila surface epithelia
    • Tzou P, Ohresser S, Ferrandon D, Capovilla M, Reichhart JM, et al. 2000. Tissue-specific inducible expression of antimicrobial peptide genes in Drosophila surface epithelia. Immunity 13:737-48
    • (2000) Immunity , vol.13 , pp. 737-748
    • Tzou, P.1    Ohresser, S.2    Ferrandon, D.3    Capovilla, M.4    Reichhart, J.M.5
  • 191
    • 33847264996 scopus 로고    scopus 로고
    • Drosophila NPC1b promotes an early step in sterol absorption from the midgut epithelium
    • Voght SP, Fluegel ML, Andrews LA, Pallanck LJ. 2007. Drosophila NPC1b promotes an early step in sterol absorption from the midgut epithelium. Cell Metab. 5:195-205
    • (2007) Cell Metab. , vol.5 , pp. 195-205
    • Voght, S.P.1    Fluegel, M.L.2    Andrews, L.A.3    Pallanck, L.J.4
  • 192
    • 68849129637 scopus 로고    scopus 로고
    • Dietary zinc absorption is mediated by ZnT1 in Drosophila melanogaster
    • Wang X, Wu Y, Zhou B. 2009. Dietary zinc absorption is mediated by ZnT1 in Drosophila melanogaster. FASEB J. 23:2650-61
    • (2009) FASEB J. , vol.23 , pp. 2650-2661
    • Wang, X.1    Wu, Y.2    Zhou, B.3
  • 193
    • 84884675234 scopus 로고    scopus 로고
    • The inconstant gut microbiota of Drosophila species revealed by 16S rRNA gene analysis
    • Wong AC, Chaston JM, Douglas AE. 2013. The inconstant gut microbiota of Drosophila species revealed by 16S rRNA gene analysis. ISME J. 7:1922-32
    • (2013) ISME J , vol.7 , pp. 1922-1932
    • Wong, A.C.1    Chaston, J.M.2    Douglas, A.E.3
  • 194
    • 79959841282 scopus 로고    scopus 로고
    • Low-diversity bacterial community in the gut of the fruitfly Drosophila melanogaster
    • Wong CN, Ng P, Douglas AE. 2011. Low-diversity bacterial community in the gut of the fruitfly Drosophila melanogaster. Environ. Microbiol. 13:1889-900
    • (2011) Environ. Microbiol , vol.1889 , pp. 13
    • Wong, C.N.1    Ng, P.2    Douglas, A.E.3
  • 195
    • 40149099958 scopus 로고    scopus 로고
    • Pitfalls of measuring feeding rate in the fruit fly Drosophila melanogaster
    • author reply 5
    • Wong R, Piper MD, Blanc E, Partridge L. 2008. Pitfalls of measuring feeding rate in the fruit fly Drosophila melanogaster. Nat. Methods 5:214-15; author reply 5
    • (2008) Nat. Methods , vol.5 , pp. 214-215
    • Wong, R.1    Piper, M.D.2    Blanc, E.3    Partridge, L.4
  • 196
    • 65649093359 scopus 로고    scopus 로고
    • Control of the release of digestive enzymes in the caeca of the cricket Gryllus bimaculatus
    • Woodring J, Diersch S, Lwalaba D, Hoffmann KH, Meyering-Vos M. 2009. Control of the release of digestive enzymes in the caeca of the cricket Gryllus bimaculatus. Physiol. Entomol. 34:144-51
    • (2009) Physiol. Entomol. , vol.34 , pp. 144-151
    • Woodring, J.1    Diersch, S.2    Lwalaba, D.3    Hoffmann, K.H.4    Meyering-Vos, M.5
  • 197
    • 0037899136 scopus 로고    scopus 로고
    • Developmental control of foraging and social behavior by the Drosophila neuropeptide Y-like system
    • Wu Q, Wen T, Lee G, Park JH, Cai HN, Shen P. 2003. Developmental control of foraging and social behavior by the Drosophila neuropeptide Y-like system. Neuron 39:147-61
    • (2003) Neuron , vol.39 , pp. 147-161
    • Wu, Q.1    Wen, T.2    Lee, G.3    Park, J.H.4    Cai, H.N.5    Shen, P.6
  • 198
    • 27744546414 scopus 로고    scopus 로고
    • Regulation of aversion to noxious food by Drosophila neuropeptide Y-and insulin-like systems
    • Wu Q, Zhao Z, Shen P. 2005. Regulation of aversion to noxious food by Drosophila neuropeptide Y-and insulin-like systems. Nat. Neurosci. 8:1350-55
    • (2005) Nat. Neurosci. , vol.8 , pp. 1350-1355
    • Wu, Q.1    Zhao, Z.2    Shen, P.3
  • 199
    • 33750219660 scopus 로고    scopus 로고
    • Transcriptome response to heavy metal stress in Drosophila reveals a new zinc transporter that confers resistance to zinc
    • Yepiskoposyan H, Egli D, Fergestad T, Selvaraj A, Treiber C, et al. 2006. Transcriptome response to heavy metal stress in Drosophila reveals a new zinc transporter that confers resistance to zinc. Nucleic Acids Res. 34:4866-77
    • (2006) Nucleic Acids Res. , vol.34 , pp. 4866-4877
    • Yepiskoposyan, H.1    Egli, D.2    Fergestad, T.3    Selvaraj, A.4    Treiber, C.5
  • 200
    • 33645994799 scopus 로고    scopus 로고
    • The Drosophila amidase PGRP-LB modulates the immune response to bacterial infection
    • Zaidman-Remy A, Herve M, Poidevin M, Pili-Floury S, Kim MS, et al. 2006. The Drosophila amidase PGRP-LB modulates the immune response to bacterial infection. Immunity 24:463-73
    • (2006) Immunity , vol.24 , pp. 463-473
    • Zaidman-Remy, A.1    Herve, M.2    Poidevin, M.3    Pili-Floury, S.4    Kim, M.S.5
  • 201
    • 84856478562 scopus 로고    scopus 로고
    • The Drosophila larva as a tool to study gut-associated macrophages: PI3K regulates a discrete hemocyte population at the proventriculus
    • Zaidman-Remy A, Regan JC, Brandao AS, Jacinto A. 2012. The Drosophila larva as a tool to study gut-associated macrophages: PI3K regulates a discrete hemocyte population at the proventriculus. Dev. Comp. Immunol. 36:638-47
    • (2012) Dev. Comp. Immunol. , vol.36 , pp. 638-647
    • Zaidman-Remy, A.1    Regan, J.C.2    Brandao, A.S.3    Jacinto, A.4
  • 202
    • 0034948931 scopus 로고    scopus 로고
    • The Drosophila homolog of mammalian zinc finger factor MTF-1 activates transcription in response to heavy metals
    • Zhang B, Egli D, Georgiev O, Schaffner W. 2001. The Drosophila homolog of mammalian zinc finger factor MTF-1 activates transcription in response to heavy metals. Mol. Cell. Biol. 21:4505-14
    • (2001) Mol. Cell. Biol. , vol.21 , pp. 4505-4514
    • Zhang, B.1    Egli, D.2    Georgiev, O.3    Schaffner, W.4
  • 203
    • 0346735285 scopus 로고    scopus 로고
    • Evolutionary history and mode of the amylase multigene family in Drosophila
    • Zhang Z, Inomata N, Yamazaki T, Kishino H. 2003. Evolutionary history and mode of the amylase multigene family in Drosophila. J. Mol. Evol. 57:702-9
    • (2003) J. Mol. Evol. , vol.57 , pp. 702-709
    • Zhang, Z.1    Inomata, N.2    Yamazaki, T.3    Kishino, H.4
  • 204
    • 0346850828 scopus 로고    scopus 로고
    • A copper-regulated transporter required for copper acquisition, pigmentation, and specific stages of development in Drosophila melanogaster
    • Zhou H, Cadigan KM, Thiele DJ. 2003. A copper-regulated transporter required for copper acquisition, pigmentation, and specific stages of development in Drosophila melanogaster. J. Biol. Chem. 278:48210-18
    • (2003) J. Biol. Chem. , vol.278 , pp. 48210-48218
    • Zhou, H.1    Cadigan, K.M.2    Thiele, D.J.3
  • 205
    • 0037112907 scopus 로고    scopus 로고
    • Nutrient control of gene expression in Drosophila: Microarray analysis of starvation and sugar-dependent response
    • Zinke I, Schutz CS, Katzenberger JD, Bauer M, Pankratz MJ. 2002. Nutrient control of gene expression in Drosophila: microarray analysis of starvation and sugar-dependent response. EMBO J. 21:6162-73
    • (2002) EMBO J. , vol.21 , pp. 6162-6173
    • Zinke, I.1    Schutz, C.S.2    Katzenberger, J.D.3    Bauer, M.4    Pankratz, M.J.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.