메뉴 건너뛰기




Volumn 141, Issue 11, 2013, Pages 4140-4153

Empirical localization of observation impact in ensemble kalman filters

Author keywords

[No Author keywords available]

Indexed keywords

ENSEMBLE DATA ASSIMILATION; ENSEMBLE KALMAN FILTER; GAUSSIAN FUNCTIONS; GEOPHYSICAL APPLICATIONS; OBSERVATION IMPACTS; OBSERVING SYSTEM SIMULATION EXPERIMENTS; REGRESSION COEFFICIENT; ROOT-MEAN SQUARE ERRORS;

EID: 84888414100     PISSN: 00270644     EISSN: 15200493     Source Type: Journal    
DOI: 10.1175/MWR-D-12-00330.1     Document Type: Article
Times cited : (63)

References (37)
  • 1
    • 0035655814 scopus 로고    scopus 로고
    • An ensemble adjustment Kalman filter for data assimilation
    • Anderson, J. L., 2001: An ensemble adjustment Kalman filter for data assimilation. Mon. Wea. Rev., 129, 2884-2903.
    • (2001) Mon. Wea. Rev. , vol.129 , pp. 2884-2903
    • Anderson, J.L.1
  • 2
    • 0042821672 scopus 로고    scopus 로고
    • A local least squares framework for ensemble filtering
    • Anderson, J. L., 2003: A local least squares framework for ensemble filtering. Mon. Wea. Rev., 131, 634-642.
    • (2003) Mon. Wea. Rev. , vol.131 , pp. 634-642
    • Anderson, J.L.1
  • 3
    • 34248655165 scopus 로고    scopus 로고
    • Exploring the need for localization in ensemble data assimilation using a hierarchical ensemble filter
    • Anderson, J. L., 2007: Exploring the need for localization in ensemble data assimilation using a hierarchical ensemble filter. Physica D, 230, 99-111.
    • (2007) Physica D , vol.230 , pp. 99-111
    • Anderson, J.L.1
  • 4
    • 58049084742 scopus 로고    scopus 로고
    • Spatially and temporally varying adaptive covariance inflation for ensemble filters
    • Anderson, J. L., 2009a: Spatially and temporally varying adaptive covariance inflation for ensemble filters. Tellus, 61A, 72-83.
    • (2009) Tellus , vol.61 A , pp. 72-83
    • Anderson, J.L.1
  • 5
    • 66849106318 scopus 로고    scopus 로고
    • Ensemble Kalman filters for large geophysical applications
    • Anderson, J. L., 2009b: Ensemble Kalman filters for large geophysical applications. IEEE Contr. Syst. Mag., 29, 66-82.
    • (2009) IEEE Contr. Syst. Mag. , vol.29 , pp. 66-82
    • Anderson, J.L.1
  • 6
    • 78650184482 scopus 로고    scopus 로고
    • A non-Gaussian ensemble filter update for data assimilation
    • Anderson, J. L., 2010: A non-Gaussian ensemble filter update for data assimilation. Mon. Wea. Rev., 138, 4186-4198.
    • (2010) Mon. Wea. Rev. , vol.138 , pp. 4186-4198
    • Anderson, J.L.1
  • 7
    • 84864864640 scopus 로고    scopus 로고
    • Localization and sampling error correction in ensemble Kalman filter data assimilation
    • Anderson, J. L., 2012: Localization and sampling error correction in ensemble Kalman filter data assimilation. Mon. Wea. Rev., 140, 2359-2371.
    • (2012) Mon. Wea. Rev. , vol.140 , pp. 2359-2371
    • Anderson, J.L.1
  • 8
    • 34548625197 scopus 로고    scopus 로고
    • Scalable implementations of ensemble filter algorithms for data assimilation
    • Anderson, J. L., and N. Collins, 2007: Scalable implementations of ensemble filter algorithms for data assimilation. J. Atmos. Oceanic Technol., 24, 1452-1463.
    • (2007) J. Atmos. Oceanic Technol. , vol.24 , pp. 1452-1463
    • Anderson, J.L.1    Collins, N.2
  • 10
    • 38849152191 scopus 로고    scopus 로고
    • Flow adaptive moderation of spurious ensemble correlations and its use in ensemble based data assimilation
    • Bishop, C. H., and D. Hodyss, 2007: Flow adaptive moderation of spurious ensemble correlations and its use in ensemble based data assimilation. Quart. J. Roy. Meteor. Soc., 133, 2029-2044.
    • (2007) Quart. J. Roy. Meteor. Soc. , vol.133 , pp. 2029-2044
    • Bishop, C.H.1    Hodyss, D.2
  • 11
    • 58049107252 scopus 로고    scopus 로고
    • Ensemble covariances adaptively localized with ECO-RAP. Part 1: Tests on simple error models
    • Bishop, C. H., and D. Hodyss, 2009a: Ensemble covariances adaptively localized with ECO-RAP. Part 1: Tests on simple error models. Tellus, 61A, 84-96.
    • (2009) Tellus , vol.61 A , pp. 84-96
    • Bishop, C.H.1    Hodyss, D.2
  • 12
    • 58049115522 scopus 로고    scopus 로고
    • Ensemble covariances adaptively localized with ECO-RAP. Part 2: Astrategy for the atmosphere
    • Bishop, C. H., and D. Hodyss, 2009b: Ensemble covariances adaptively localized with ECO-RAP. Part 2: Astrategy for the atmosphere. Tellus, 61A, 97-111.
    • (2009) Tellus , vol.61 A , pp. 97-111
    • Bishop, C.H.1    Hodyss, D.2
  • 13
    • 0032439201 scopus 로고    scopus 로고
    • Analysis scheme in the ensemble Kalman filter
    • Burgers, G., P. J. van Leeuwen, and G. Evensen, 1998: Analysis scheme in the ensemble Kalman filter. Mon. Wea. Rev., 126, 1719-1724.
    • (1998) Mon. Wea. Rev. , vol.126 , pp. 1719-1724
    • Burgers, G.1    Van Leeuwen, P.J.2    Evensen, G.3
  • 14
    • 77953226947 scopus 로고    scopus 로고
    • Vertical covariance localization for satellite radiances in ensembleKalman filters
    • Campbell, W. F., C. H. Bishop, and D. Hodyss, 2010: Vertical covariance localization for satellite radiances in ensembleKalman filters. Mon. Wea. Rev., 138, 282-290.
    • (2010) Mon. Wea. Rev. , vol.138 , pp. 282-290
    • Campbell, W.F.1    Bishop, C.H.2    Hodyss, D.3
  • 15
    • 77952887324 scopus 로고    scopus 로고
    • Cross-covariances and localization for EnKF in multiphase flow data assimilation
    • doi:10.1007/s10596-009-9174-6
    • Chen, Y., and D. S. Oliver, 2009: Cross-covariances and localization for EnKF in multiphase flow data assimilation. Comput. Geosci., 14, 579-601, doi:10.1007/s10596-009-9174-6.
    • (2009) Comput. Geosci. , vol.14 , pp. 579-601
    • Chen, Y.1    Oliver, D.S.2
  • 16
    • 79952438014 scopus 로고    scopus 로고
    • Combining sensitivities and prior information for covariance localization in the ensemble Kalman filter for petroleum reservoir applications
    • doi:10.1007/s10596-010-9198-y
    • Emerick, A., and A. Reynolds, 2010: Combining sensitivities and prior information for covariance localization in the ensemble Kalman filter for petroleum reservoir applications. Comput. Geosci., 15, 251-269, doi:10.1007/s10596-010-9198-y.
    • (2010) Comput. Geosci. , vol.15 , pp. 251-269
    • Emerick, A.1    Reynolds, A.2
  • 17
    • 0028193070 scopus 로고
    • Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics
    • Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99 (C5), 10143-10162.
    • (1994) J. Geophys. Res. , vol.99 , Issue.C5 , pp. 10143-10162
    • Evensen, G.1
  • 18
    • 33750502680 scopus 로고    scopus 로고
    • Estimation of high-dimensional prior and posterior covariance matrices in Kalman filter variants
    • Furrer, R., and T. Bengtsson, 2007: Estimation of high-dimensional prior and posterior covariance matrices in Kalman filter variants. J. Multivariate Anal., 98, 227-255.
    • (2007) J. Multivariate Anal. , vol.98 , pp. 227-255
    • Furrer, R.1    Bengtsson, T.2
  • 19
    • 0033023511 scopus 로고    scopus 로고
    • Construction of correlation functions in two and three dimensions
    • Gaspari, G., and S. E. Cohn, 1999: Construction of correlation functions in two and three dimensions. Quart. J. Roy. Meteor. Soc., 125, 723-757.
    • (1999) Quart. J. Roy. Meteor. Soc. , vol.125 , pp. 723-757
    • Gaspari, G.1    Cohn, S.E.2
  • 20
    • 79953216060 scopus 로고    scopus 로고
    • Balance and ensemble Kalman filter localization techniques
    • Greybush, S. J., E. Kalnay, T. Miyoshi, K. Ide, and B. R. Hunt, 2011: Balance and ensemble Kalman filter localization techniques. Mon. Wea. Rev., 139, 511-522.
    • (2011) Mon. Wea. Rev. , vol.139 , pp. 511-522
    • Greybush, S.J.1    Kalnay, E.2    Miyoshi, T.3    Ide, K.4    Hunt, B.R.5
  • 21
    • 0035506430 scopus 로고    scopus 로고
    • Distancedependent filtering of background error covariance estimates in an ensemble Kalman filter
    • Hamill, T. M., J. S. Whitaker, and C. Snyder, 2001: Distancedependent filtering of background error covariance estimates in an ensemble Kalman filter. Mon. Wea. Rev., 129, 2776-2790.
    • (2001) Mon. Wea. Rev. , vol.129 , pp. 2776-2790
    • Hamill, T.M.1    Whitaker, J.S.2    Snyder, C.3
  • 22
    • 0032024819 scopus 로고    scopus 로고
    • Data assimilation using an ensemble Kalman filter technique
    • Houtekamer, P. L., and H. L. Mitchell, 1998: Data assimilation using an ensemble Kalman filter technique. Mon. Wea. Rev., 126, 796-811.
    • (1998) Mon. Wea. Rev. , vol.126 , pp. 796-811
    • Houtekamer, P.L.1    Mitchell, H.L.2
  • 25
    • 85024429815 scopus 로고
    • A new approach to linear filtering and prediction problems
    • Kalman, R. E., 1960: A new approach to linear filtering and prediction problems. J. Basic Eng., 82D, 35-45.
    • (1960) J. Basic Eng. , vol.82 D , pp. 35-45
    • Kalman, R.E.1
  • 26
    • 79957462609 scopus 로고    scopus 로고
    • "Variable localization" in an ensemble Kalman filter: Application to the carbon cycle data assimilation
    • doi:10.1029/2010JD014673
    • Kang, J.-S., E. Kalnay, J. Liu, I. Fung, T. Miyoshi, and K. Ide, 2011: "Variable localization" in an ensemble Kalman filter: Application to the carbon cycle data assimilation. J. Geophys. Res., 116, D09110, doi:10.1029/2010JD014673.
    • (2011) J. Geophys. Res. , vol.116
    • Kang, J.-S.1    Kalnay, E.2    Liu, J.3    Fung, I.4    Miyoshi, T.5    Ide, K.6
  • 27
    • 70149088574 scopus 로고    scopus 로고
    • Covariance localisation and balance in an ensemble Kalman filter
    • Kepert, J. D., 2009: Covariance localisation and balance in an ensemble Kalman filter. Quart. J. Roy. Meteor. Soc., 135, 1157-1176.
    • (2009) Quart. J. Roy. Meteor. Soc. , vol.135 , pp. 1157-1176
    • Kepert, J.D.1
  • 28
    • 33846692390 scopus 로고    scopus 로고
    • Importance of forecast error multivariate correlations in idealized assimilations of GPS radio occultation data with the ensemble adjustment filter
    • Liu, H., J. L. Anderson, Y.-H. Kuo, and K. Raeder, 2007: Importance of forecast error multivariate correlations in idealized assimilations of GPS radio occultation data with the ensemble adjustment filter. Mon. Wea. Rev., 135, 173-185.
    • (2007) Mon. Wea. Rev. , vol.135 , pp. 173-185
    • Liu, H.1    Anderson, J.L.2    Kuo, Y.-H.3    Raeder, K.4
  • 29
    • 0347709927 scopus 로고    scopus 로고
    • The potential of the ensemble Kalman filter for NWP-A comparison with 4D-Var
    • Lorenc, A. C., 2003: The potential of the ensemble Kalman filter for NWP-A comparison with 4D-Var. Quart. J. Roy. Meteor. Soc., 129, 3183-3204.
    • (2003) Quart. J. Roy. Meteor. Soc. , vol.129 , pp. 3183-3204
    • Lorenc, A.C.1
  • 30
    • 0032004313 scopus 로고    scopus 로고
    • Optimal sites for supplementary weather observations: Simulation with a small model
    • Lorenz, E. N., and K. A. Emanuel, 1998: Optimal sites for supplementary weather observations: Simulation with a small model. J. Atmos. Sci., 55, 399-414.
    • (1998) J. Atmos. Sci. , vol.55 , pp. 399-414
    • Lorenz, E.N.1    Emanuel, K.A.2
  • 31
    • 0036853557 scopus 로고    scopus 로고
    • Ensemble size, balance, and model-error representation in an ensemble Kalman filter
    • Mitchell, H. L., P. L. Houtekamer, and G. Pellerin, 2002: Ensemble size, balance, and model-error representation in an ensemble Kalman filter. Mon. Wea. Rev., 130, 2791-2808.
    • (2002) Mon. Wea. Rev. , vol.130 , pp. 2791-2808
    • Mitchell, H.L.1    Houtekamer, P.L.2    Pellerin, G.3
  • 32
    • 67449138958 scopus 로고    scopus 로고
    • Localizing the error covariance by physical distance within a local ensemble transform Kalman filter (LETKF)
    • Miyoshi, T., S. Yamane, and T. Enomoto, 2007: Localizing the error covariance by physical distance within a local ensemble transform Kalman filter (LETKF). SOLA, 3, 89-92.
    • (2007) SOLA , vol.3 , pp. 89-92
    • Miyoshi, T.1    Yamane, S.2    Enomoto, T.3
  • 33
    • 33847294302 scopus 로고    scopus 로고
    • Impacts of localization in the EnKF and EnOI: Experiments with a small model
    • Oke, P. R., P. Sakov, and S. P. Corney, 2007: Impacts of localization in the EnKF and EnOI: Experiments with a small model. Ocean Dyn., 57, 32-45.
    • (2007) Ocean Dyn. , vol.57 , pp. 32-45
    • Oke, P.R.1    Sakov, P.2    Corney, S.P.3
  • 34
    • 8844258829 scopus 로고    scopus 로고
    • A local ensemble Kalman filter for atmospheric data assimilation
    • Ott, E., and Coauthors, 2004: A local ensemble Kalman filter for atmospheric data assimilation. Tellus, 56A, 415-428.
    • (2004) Tellus , vol.56 A , pp. 415-428
    • Ott, E.1
  • 35
    • 24144494208 scopus 로고    scopus 로고
    • Ensemble Kalman filter assimilation of Doppler radar data with a compressible nonhydrostatic model: OSS experiments
    • Tong, M., and M. Xue, 2005: Ensemble Kalman filter assimilation of Doppler radar data with a compressible nonhydrostatic model: OSS experiments. Mon. Wea. Rev., 133, 1789-1807.
    • (2005) Mon. Wea. Rev. , vol.133 , pp. 1789-1807
    • Tong, M.1    Xue, M.2
  • 36
    • 2442668784 scopus 로고    scopus 로고
    • Reanalysis without radiosondes using ensemble data assimilation
    • Whitaker, J. S., G. P. Compo, X. Wei, and T. M. Hamill, 2004: Reanalysis without radiosondes using ensemble data assimilation. Mon. Wea. Rev., 132, 1190-1200.
    • (2004) Mon. Wea. Rev. , vol.132 , pp. 1190-1200
    • Whitaker, J.S.1    Compo, G.P.2    Wei, X.3    Hamill, T.M.4
  • 37
    • 77952885727 scopus 로고    scopus 로고
    • Improving the ensemble estimate of the Kalman gain by bootstrap sampling
    • Zhang, Y., and D. S. Oliver, 2010: Improving the ensemble estimate of the Kalman gain by bootstrap sampling. Math. Geosci., 42, 327-345.
    • (2010) Math. Geosci. , vol.42 , pp. 327-345
    • Zhang, Y.1    Oliver, D.S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.