메뉴 건너뛰기




Volumn , Issue NOV, 2013, Pages

A permutation testing framework to compare groups of brain networks

Author keywords

Connectivity; fMRI; Graph theory; Jaccard; Kolmogorov Smirnov; Neuroimaging; Small world

Indexed keywords

CONNECTIVITY; FMRI; JACCARD; KOLMOGOROV-SMIRNOV; SMALL WORLDS;

EID: 84888357102     PISSN: 16625188     EISSN: None     Source Type: Journal    
DOI: 10.3389/fncom.2013.00171     Document Type: Article
Times cited : (67)

References (33)
  • 1
    • 0038483826 scopus 로고    scopus 로고
    • Emergence of scaling in random networks
    • doi: 10.1126/science.286.5439.509
    • Barabasi, A. L., and Albert, R. (1999). Emergence of scaling in random networks. Science 286, 509-512. doi: 10.1126/science.286.5439.509.
    • (1999) Science , vol.286 , pp. 509-512
    • Barabasi, A.L.1    Albert, R.2
  • 2
    • 68449088228 scopus 로고    scopus 로고
    • Human brain networks in health and disease
    • doi: 10.1097/WCO.0b013e32832d93dd
    • Bassett, D. S., and Bullmore, E. T. (2009). Human brain networks in health and disease. Curr. Opin. Neurol. 22, 340-347. doi: 10.1097/WCO.0b013e32832d93dd.
    • (2009) Curr. Opin. Neurol , vol.22 , pp. 340-347
    • Bassett, D.S.1    Bullmore, E.T.2
  • 3
    • 0032587690 scopus 로고    scopus 로고
    • Global, voxel, and cluster tests, by theory and permutation, for a difference between two groups of structural MR images of the brain
    • doi: 10.1109/42.750253
    • Bullmore, E. T., Suckling, J., Overmeyer, S., Rabe-Hesketh, S., Taylor, E., and Brammer, M. J. (1999). Global, voxel, and cluster tests, by theory and permutation, for a difference between two groups of structural MR images of the brain. IEEE Trans. Med. Imaging 18, 32-42. doi: 10.1109/42.750253.
    • (1999) IEEE Trans. Med. Imaging , vol.18 , pp. 32-42
    • Bullmore, E.T.1    Suckling, J.2    Overmeyer, S.3    Rabe-Hesketh, S.4    Taylor, E.5    Brammer, M.J.6
  • 4
    • 79952610346 scopus 로고    scopus 로고
    • Using network science to evaluate exercise-associated brain changes in older adults
    • doi: 10.3389/fnagi.2010.00023
    • Burdette, J. H., Laurienti, P. J., Espeland, M. A., Morgan, A., Telesford, Q., Vechlekar, C. D., et al. (2010). Using network science to evaluate exercise-associated brain changes in older adults. Front. Aging Neurosci. 2:23. doi: 10.3389/fnagi.2010.00023.
    • (2010) Front. Aging Neurosci , vol.2 , pp. 23
    • Burdette, J.H.1    Laurienti, P.J.2    Espeland, M.A.3    Morgan, A.4    Telesford, Q.5    Vechlekar, C.D.6
  • 5
    • 67651159289 scopus 로고    scopus 로고
    • Reproducibility of graph metrics of human brain functional networks
    • doi: 10.1016/j.neuroimage.2009.05.035
    • Deuker, L., Bullmore, E. T., Smith, M., Christensen, S., Nathan, P. J., Rockstroh, B., et al. (2009). Reproducibility of graph metrics of human brain functional networks. Neuroimage 47, 1460-1468. doi: 10.1016/j.neuroimage.2009.05.035.
    • (2009) Neuroimage , vol.47 , pp. 1460-1468
    • Deuker, L.1    Bullmore, E.T.2    Smith, M.3    Christensen, S.4    Nathan, P.J.5    Rockstroh, B.6
  • 6
    • 77953694596 scopus 로고    scopus 로고
    • Age-dependent features of EEG-reactivity spectral, complexity, and network characteristics
    • doi: 10.1016/j.neulet.2010.05.037
    • Gaal, Z. A., Boha, R., Stam, C. J., and Molnar, M. (2009). Age-dependent features of EEG-reactivity spectral, complexity, and network characteristics. Neurosci. Lett. 479, 79-84. doi: 10.1016/j.neulet.2010.05.037.
    • (2009) Neurosci. Lett , vol.479 , pp. 79-84
    • Gaal, Z.A.1    Boha, R.2    Stam, C.J.3    Molnar, M.4
  • 7
    • 72449195774 scopus 로고    scopus 로고
    • Age-and gender related differences in the cortical anatomical network
    • doi: 10.1523/JNEUROSCI.2308-09.2009
    • Gong, G., Rosa-Neto, P., Carbonell, F., Chen, Z. J., He, Y., and Evans, A. C. (2009). Age-and gender related differences in the cortical anatomical network. J. Neurosci. 29, 15684-15693. doi: 10.1523/JNEUROSCI.2308-09.2009.
    • (2009) J. Neurosci , vol.29 , pp. 15684-15693
    • Gong, G.1    Rosa-Neto, P.2    Carbonell, F.3    Chen, Z.J.4    He, Y.5    Evans, A.C.6
  • 8
    • 48349097292 scopus 로고    scopus 로고
    • Mapping the structural core of human cerebral cortex
    • doi: 10.1371/journal.pbio.0060159
    • Hagmann, P., Cammoun, L., Gigandet, X., Meuli, R., Honey, C. J., Wedeen, V. J., et al. (2008). Mapping the structural core of human cerebral cortex. PLoS Biol. 6:e159. doi: 10.1371/journal.pbio.0060159.
    • (2008) PLoS Biol , vol.6
    • Hagmann, P.1    Cammoun, L.2    Gigandet, X.3    Meuli, R.4    Honey, C.J.5    Wedeen, V.J.6
  • 9
    • 77952317463 scopus 로고    scopus 로고
    • Comparison of characteristics between region-and voxel-based network analyses in resting-state fMRI data
    • doi: 10.1016/j.neuroimage.2009.12.051
    • Hayasaka, S., and Laurienti, P. J. (2010). Comparison of characteristics between region-and voxel-based network analyses in resting-state fMRI data. Neuroimage 50, 499-508. doi: 10.1016/j.neuroimage.2009.12.051.
    • (2010) Neuroimage , vol.50 , pp. 499-508
    • Hayasaka, S.1    Laurienti, P.J.2
  • 10
    • 0347626247 scopus 로고    scopus 로고
    • Validating cluster size inference: Random field and permutation methods
    • doi: 10.1016/j.neuroimage.2003.08.003
    • Hayasaka, S., and Nichols, T. E. (2003). Validating cluster size inference: random field and permutation methods. Neuroimage 20, 2343-2356. doi: 10.1016/j.neuroimage.2003.08.003.
    • (2003) Neuroimage , vol.20 , pp. 2343-2356
    • Hayasaka, S.1    Nichols, T.E.2
  • 11
    • 4344580309 scopus 로고    scopus 로고
    • Combining voxel intensity and cluster extent with permutation test framework
    • doi: 10.1016/j.neuroimage.2004.04.035
    • Hayasaka, S., and Nichols, T. E. (2004). Combining voxel intensity and cluster extent with permutation test framework. Neuroimage 23, 54-63. doi: 10.1016/j.neuroimage.2004.04.035.
    • (2004) Neuroimage , vol.23 , pp. 54-63
    • Hayasaka, S.1    Nichols, T.E.2
  • 12
    • 0030032744 scopus 로고    scopus 로고
    • Nonparametric analysis of statistic images from functional mapping experiments
    • doi: 10.1097/00004647-199601000-00002
    • Holmes, A. P., Blair, R. C., Watson, J. D., and Ford, I. (1996). Nonparametric analysis of statistic images from functional mapping experiments. J. Cereb. Blood Flow Metab. 16, 7-22. doi: 10.1097/00004647-199601000-00002.
    • (1996) J. Cereb. Blood Flow Metab , vol.16 , pp. 7-22
    • Holmes, A.P.1    Blair, R.C.2    Watson, J.D.3    Ford, I.4
  • 13
    • 70349568714 scopus 로고    scopus 로고
    • Age-related increase in cross-sensory noise in resting and steady-state cerebral perfusion
    • doi: 10.1007/s10548-009-0098-1
    • Hugenschmidt, C. E., Mozolic, J. L., Tan, H., Kraft, R. A., and Laurienti, P. J. (2009). Age-related increase in cross-sensory noise in resting and steady-state cerebral perfusion. Brain Topogr. 21, 241-251. doi: 10.1007/s10548-009-0098-1.
    • (2009) Brain Topogr , vol.21 , pp. 241-251
    • Hugenschmidt, C.E.1    Mozolic, J.L.2    Tan, H.3    Kraft, R.A.4    Laurienti, P.J.5
  • 14
    • 77957883783 scopus 로고    scopus 로고
    • A new measure of centrality for brain networks
    • doi: 10.1371/journal.pone.0012200
    • Joyce, K. E., Laurienti, P. J., Burdette, J. H., and Hayasaka, S. (2010). A new measure of centrality for brain networks. PLoS ONE 5:e12200. doi: 10.1371/journal.pone.0012200.
    • (2010) PLoS ONE , vol.5
    • Joyce, K.E.1    Laurienti, P.J.2    Burdette, J.H.3    Hayasaka, S.4
  • 15
    • 0001869771 scopus 로고
    • Sulla determinazione empirica di una legge di distribuzione
    • Kolmogorov, A. (1933). Sulla determinazione empirica di una legge di distribuzione.G. Ist. Ital. Attuari 4, 83.
    • (1933) G. Ist. Ital. Attuari , vol.4 , pp. 83
    • Kolmogorov, A.1
  • 16
    • 41849126709 scopus 로고    scopus 로고
    • Disrupted small-world networks in schizophrenia
    • doi: 10.1093/brain/awn018
    • Liu, Y., Liang, M., Zhou, Y., He, Y., Hao, Y., Song, M., et al. (2008). Disrupted small-world networks in schizophrenia. Brain 131, 945-961. doi: 10.1093/brain/awn018.
    • (2008) Brain , vol.131 , pp. 945-961
    • Liu, Y.1    Liang, M.2    Zhou, Y.3    He, Y.4    Hao, Y.5    Song, M.6
  • 17
    • 57649177558 scopus 로고    scopus 로고
    • Age-related changes in modular organization of human brain functional networks
    • doi: 10.1016/j.neuroimage.2008.09.062
    • Meunier, D., Achard, S., Morcom, A., and Bullmore, E. (2009a). Age-related changes in modular organization of human brain functional networks. Neuroimage 44, 715-723. doi: 10.1016/j.neuroimage.2008.09.062.
    • (2009) Neuroimage , vol.44 , pp. 715-723
    • Meunier, D.1    Achard, S.2    Morcom, A.3    Bullmore, E.4
  • 18
    • 77952187232 scopus 로고    scopus 로고
    • Hierarchical modularity in human brain functional networks
    • doi: 10.3389/neuro.11.037.2009
    • Meunier, D., Lambiotte, R., Fornito, A., Ersche, K. D., and Bullmore, E. T. (2009b). Hierarchical modularity in human brain functional networks. Front. Neuroinform. 3:37. doi: 10.3389/neuro.11.037.2009.
    • (2009) Front. Neuroinform , vol.3 , pp. 37
    • Meunier, D.1    Lambiotte, R.2    Fornito, A.3    Ersche, K.D.4    Bullmore, E.T.5
  • 19
    • 84865632744 scopus 로고    scopus 로고
    • Consistency of network modules in resting-state FMRI connectome data
    • doi: 10.1371/journal.pone.0044428
    • Moussa, M. N., Steen, M. R., Laurienti, P. J., and Hayasaka, S. (2012). Consistency of network modules in resting-state FMRI connectome data. PLoS ONE 7:e44428. doi: 10.1371/journal.pone.0044428.
    • (2012) PLoS ONE , vol.7
    • Moussa, M.N.1    Steen, M.R.2    Laurienti, P.J.3    Hayasaka, S.4
  • 21
    • 0036136472 scopus 로고    scopus 로고
    • Nonparametric permutation tests for functional neuroimaging: A primer with examples
    • doi: 10.1002/hbm.1058
    • Nichols, T. E., and Holmes, A. P. (2002). Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum. Brain Mapp. 15, 1-25. doi: 10.1002/hbm.1058.
    • (2002) Hum. Brain Mapp , vol.15 , pp. 1-25
    • Nichols, T.E.1    Holmes, A.P.2
  • 22
    • 0242721216 scopus 로고    scopus 로고
    • Controlling the familywise error rate in functional neuroimaging: A comparative review
    • doi: 10.1191/0962280203sm341ra
    • Nichols, T., and Hayasaka, S. (2003). Controlling the familywise error rate in functional neuroimaging: a comparative review. Stat. Methods Med. Res. 12, 419-446. doi: 10.1191/0962280203sm341ra.
    • (2003) Stat. Methods Med. Res , vol.12 , pp. 419-446
    • Nichols, T.1    Hayasaka, S.2
  • 23
    • 78149276744 scopus 로고    scopus 로고
    • Permutation p-values should never be zero: Calculating exact p-values when permutations are randomly drawn
    • doi: 10.2202/1544-6115.1585
    • Phipson, B. and Smyth, G. K. (2010). Permutation p-values should never be zero: calculating exact p-values when permutations are randomly drawn. Stat. Appl. Genet. Mol. Biol. 9, 39. doi: 10.2202/1544-6115.1585.
    • (2010) Stat. Appl. Genet. Mol. Biol , vol.9 , pp. 39
    • Phipson, B.1    Smyth, G.K.2
  • 24
    • 28744448166 scopus 로고    scopus 로고
    • Altered resting state networks in mild cognitive impairment and mild Alzheimer's disease: An fMRI study
    • doi: 10.1002/hbm.20160
    • Rombouts, S. A., Barkhof, F., Goekoop, R., Stam, C. J., and Scheltens, P. (2005). Altered resting state networks in mild cognitive impairment and mild Alzheimer's disease: an fMRI study. Hum. Brain Mapp. 26, 231-239. doi: 10.1002/hbm.20160.
    • (2005) Hum. Brain Mapp , vol.26 , pp. 231-239
    • Rombouts, S.A.1    Barkhof, F.2    Goekoop, R.3    Stam, C.J.4    Scheltens, P.5
  • 25
    • 84881171192 scopus 로고    scopus 로고
    • Stability of whole brain and regional network topology within and between resting and cognitive states
    • doi: 10.1371/journal.pone.0070275
    • Rzucidlo, J. K., Roseman, P. L., Laurienti, P. J., and Dagenbach, D. (2013). Stability of whole brain and regional network topology within and between resting and cognitive states. PLoS ONE 8:e70275. doi: 10.1371/journal.pone.0070275.
    • (2013) PLoS ONE , vol.8
    • Rzucidlo, J.K.1    Roseman, P.L.2    Laurienti, P.J.3    Dagenbach, D.4
  • 26
    • 84886863727 scopus 로고    scopus 로고
    • Analyzing complex functional brain networks: Fusing statistics and network science to understand the brain
    • doi: 10.1214/13-SS103
    • Simpson, S. L., Bowman, F. D., and Laurienti, P. J. (2013). Analyzing complex functional brain networks: fusing statistics and network science to understand the brain. Stat. Surveys 7, 1-36. doi: 10.1214/13-SS103.
    • (2013) Stat. Surveys , vol.7 , pp. 1-36
    • Simpson, S.L.1    Bowman, F.D.2    Laurienti, P.J.3
  • 27
    • 79957476684 scopus 로고    scopus 로고
    • Exponential random graph modeling for complex brain networks
    • doi: 10.1371/journal.pone.0020039
    • Simpson, S. L., Hayasaka, S., and Laurienti, P. J. (2011). Exponential random graph modeling for complex brain networks. PLoS ONE 6:e20039. doi: 10.1371/journal.pone.0020039.
    • (2011) PLoS ONE , vol.6
    • Simpson, S.L.1    Hayasaka, S.2    Laurienti, P.J.3
  • 28
    • 84856999799 scopus 로고    scopus 로고
    • An exponential random graph modeling approach to creating group-based representative whole-brain connectivity networks
    • doi: 10.1016/j.neuroimage.2012.01.071
    • Simpson, S. L., Moussa, M. N., and Laurienti, P. J. (2012). An exponential random graph modeling approach to creating group-based representative whole-brain connectivity networks. Neuroimage 60, 1117-1126. doi: 10.1016/j.neuroimage.2012.01.071.
    • (2012) Neuroimage , vol.60 , pp. 1117-1126
    • Simpson, S.L.1    Moussa, M.N.2    Laurienti, P.J.3
  • 29
    • 0001595204 scopus 로고
    • Tables for estimating the goodness of fit of empirical distributions
    • doi: 10.1214/aoms/1177730256
    • Smirnov, N. V. (1948). Tables for estimating the goodness of fit of empirical distributions. Ann. Math. Stat. 19, 279. doi: 10.1214/aoms/1177730256.
    • (1948) Ann. Math. Stat , vol.19 , pp. 279
    • Smirnov, N.V.1
  • 30
    • 33845742477 scopus 로고    scopus 로고
    • Small-world networks and functional connectivity in Alzheimer's disease
    • doi: 10.1093/cercor/bhj127
    • Stam, C. J., Jones, B. F., Nolte, G., Breakspear, M., and Scheltens, P. (2007). Small-world networks and functional connectivity in Alzheimer's disease. Cereb. Cortex 17, 92-99. doi: 10.1093/cercor/bhj127.
    • (2007) Cereb. Cortex , vol.17 , pp. 92-99
    • Stam, C.J.1    Jones, B.F.2    Nolte, G.3    Breakspear, M.4    Scheltens, P.5
  • 31
    • 54149095921 scopus 로고    scopus 로고
    • Small-world and scale-free organization of voxel-based resting-state functional connectivity in the human brain
    • doi: 10.1016/j.neuroimage.2008.08.010
    • Van Den Heuvel, M. P., Stam, C. J., Boersma, M., and Hulshoff Pol, H. E. (2008). Small-world and scale-free organization of voxel-based resting-state functional connectivity in the human brain. Neuroimage 43, 528-539. doi: 10.1016/j.neuroimage.2008.08.010.
    • (2008) Neuroimage , vol.43 , pp. 528-539
    • Van Den Heuvel, M.P.1    Stam, C.J.2    Boersma, M.3    Hulshoff Pol, H.E.4
  • 32
    • 77952951713 scopus 로고    scopus 로고
    • Altered small-world brain functional networks and duration of heroin use in male abstinent heroin-dependent individuals
    • doi: 10.1016/j.neulet.2010.04.032
    • Yuan, K., Qin, W., Liu, J., Guo, Q., Dong, M., Sun, J., et al. (2010). Altered small-world brain functional networks and duration of heroin use in male abstinent heroin-dependent individuals. Neurosci. Lett. 477, 37-42. doi: 10.1016/j.neulet.2010.04.032.
    • (2010) Neurosci. Lett , vol.477 , pp. 37-42
    • Yuan, K.1    Qin, W.2    Liu, J.3    Guo, Q.4    Dong, M.5    Sun, J.6
  • 33
    • 77957324650 scopus 로고    scopus 로고
    • Network-based statistic: Identifying differences in brain networks
    • doi: 10.1016/j.neuroimage.2010.06.041
    • Zalesky, A., Fornito, A., and Bullmore, E. T. (2010). Network-based statistic: identifying differences in brain networks. Neuroimage 53, 1197-1207. doi: 10.1016/j.neuroimage.2010.06.041.
    • (2010) Neuroimage , vol.53 , pp. 1197-1207
    • Zalesky, A.1    Fornito, A.2    Bullmore, E.T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.