-
1
-
-
84871257491
-
Global dynamics of the generalized Lorenz systems having invariant algebraic surfaces
-
K. Wu, and X. Zhang Global dynamics of the generalized Lorenz systems having invariant algebraic surfaces Physica D 244 2013 25 35
-
(2013)
Physica D
, vol.244
, pp. 25-35
-
-
Wu, K.1
Zhang, X.2
-
2
-
-
84859723708
-
Darboux polynomials and rational first integrals of the generalized Lorenz systems
-
K. Wu, and X. Zhang Darboux polynomials and rational first integrals of the generalized Lorenz systems Bull. Sci. Math. 136 2012 291 308
-
(2012)
Bull. Sci. Math.
, vol.136
, pp. 291-308
-
-
Wu, K.1
Zhang, X.2
-
3
-
-
84884821230
-
Invariant algebraic surfaces of the generalized Lorenz systems
-
in press.
-
X. Deng Invariant algebraic surfaces of the generalized Lorenz systems Z. Angew. Math. Phys. 2013 in press. http://dx.doi.org/10.1007/s00033-012-0296-7
-
(2013)
Z. Angew. Math. Phys.
-
-
Deng, X.1
-
4
-
-
34548420218
-
Dynamics of the Lorenz system having an invariant algebraic surface
-
J. Cao, and X. Zhang Dynamics of the Lorenz system having an invariant algebraic surface J. Math. Phys. 48 2007 1 13
-
(2007)
J. Math. Phys.
, vol.48
, pp. 1-13
-
-
Cao, J.1
Zhang, X.2
-
5
-
-
67650921905
-
Dynamics at infinity and the existence of singularly degenerate heteroclinic cycles in the Lorenz system
-
M. Messias Dynamics at infinity and the existence of singularly degenerate heteroclinic cycles in the Lorenz system J. Phys. A 42 2009 115101
-
(2009)
J. Phys. A
, vol.42
, pp. 115101
-
-
Messias, M.1
-
6
-
-
78651551072
-
Global dynamics of the Lorenz system with invariant algebraic surfaces
-
J. Llibre, M. Messias, and P.R. da Silva Global dynamics of the Lorenz system with invariant algebraic surfaces Int. J. Bifurcation Chaos 20 2010 3137 3155
-
(2010)
Int. J. Bifurcation Chaos
, vol.20
, pp. 3137-3155
-
-
Llibre, J.1
Messias, M.2
Da Silva, P.R.3
-
7
-
-
0000372509
-
Integrals of motion for the Lorenz system
-
M. Kús Integrals of motion for the Lorenz system J. Phys. A 16 1983 L689 L691
-
(1983)
J. Phys. A
, vol.16
-
-
Kús, M.1
-
8
-
-
0035981880
-
Invariant algebraic surfaces of the Lorenz system
-
J. Llibre, and X. Zhang Invariant algebraic surfaces of the Lorenz system J. Math. Phys. 43 2002 1622 1645
-
(2002)
J. Math. Phys.
, vol.43
, pp. 1622-1645
-
-
Llibre, J.1
Zhang, X.2
-
9
-
-
0036332012
-
The invariant algebraic surfaces of the Lorenz system
-
S.P. Swinnerton-Dyer The invariant algebraic surfaces of the Lorenz system Math. Proc. Cambridge Philos. Soc. 132 2002 385 393
-
(2002)
Math. Proc. Cambridge Philos. Soc.
, vol.132
, pp. 385-393
-
-
Swinnerton-Dyer, S.P.1
-
10
-
-
84900477239
-
On Darboux polynomials and rational first integrals of the generalized Lorenz system
-
in press.
-
A. Algaba, F. Fernández-Sánchez, M. Merino, and A.J. Rodríguez-Luis On Darboux polynomials and rational first integrals of the generalized Lorenz system Bull. Sci. Math. 2013 in press. http://dx.doi.org/10. 1016/j.bulsci.2013.03.002
-
(2013)
Bull. Sci. Math.
-
-
Algaba, A.1
Fernández-Sánchez, F.2
Merino, M.3
Rodríguez-Luis, A.J.4
-
11
-
-
0000241853
-
Deterministic nonperiodic flow
-
E.N. Lorenz Deterministic nonperiodic flow J. Atmospheric Sci. 20 1963 130 141
-
(1963)
J. Atmospheric Sci.
, vol.20
, pp. 130-141
-
-
Lorenz, E.N.1
-
13
-
-
84863828271
-
Global dynamics in the Poincaré ball of the Chen system having invariant algebraic surfaces
-
J. Llibre, M. Messias, and P.R. da Silva Global dynamics in the Poincaré ball of the Chen system having invariant algebraic surfaces Int. J. Bifurcation Chaos 22 2012 1250154
-
(2012)
Int. J. Bifurcation Chaos
, vol.22
, pp. 1250154
-
-
Llibre, J.1
Messias, M.2
Da Silva, P.R.3
-
16
-
-
84884534752
-
Chen's attractor exists if Lorenz repulsor exists: The Chen system is a special case of the Lorenz system
-
A. Algaba, F. Fernández-Sánchez, M. Merino, and A.J. Rodríguez-Luis Chen's attractor exists if Lorenz repulsor exists: the Chen system is a special case of the Lorenz system Chaos 23 2013 033108
-
(2013)
Chaos
, vol.23
, pp. 033108
-
-
Algaba, A.1
Fernández-Sánchez, F.2
Merino, M.3
Rodríguez-Luis, A.J.4
-
17
-
-
84884532123
-
Lü system is a particular case of the Lorenz system
-
submitted for publication
-
A. Algaba, F. Fernández-Sánchez, M. Merino, A.J. Rodríguez-Luis, Lü system is a particular case of the Lorenz system, Phys. Lett. A. 2013, submitted for publication.
-
(2013)
Phys. Lett. A
-
-
Algaba, A.1
|