메뉴 건너뛰기




Volumn , Issue , 2013, Pages 694-703

Integrating document clustering and topic modeling

Author keywords

[No Author keywords available]

Indexed keywords

DOCUMENT CLUSTERING; DOCUMENT COLLECTION; HIDDEN VARIABLE; MIXTURE COMPONENTS; MODEL PARAMETERS; PROJECT DOCUMENTS; UNIFIED FRAMEWORK; VARIATIONAL INFERENCE;

EID: 84888158949     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (127)

References (18)
  • 1
    • 84949179803 scopus 로고    scopus 로고
    • A survey of text clustering algorithms
    • Charu C Aggarwal and ChengXiang Zhai. A survey of text clustering algorithms. Mining Text Data, pages 77-128, 2012.
    • (2012) Mining Text Data , pp. 77-128
    • Aggarwal, C.C.1    Zhai, C.X.2
  • 2
    • 80053292334 scopus 로고    scopus 로고
    • Staying informed: Supervised and semi-supervised multi-view topical analysis of ideological perspective
    • Association for Computational Linguistics
    • Amr Ahmed and Eric P Xing. Staying informed: supervised and semi-supervised multi-view topical analysis of ideological perspective. In Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing, pages 1140-1150. Association for Computational Linguistics, 2010.
    • (2010) Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing , pp. 1140-1150
    • Ahmed, A.1    Xing, E.P.2
  • 5
    • 79955525117 scopus 로고    scopus 로고
    • Locally consistent concept factorization for document clustering
    • IEEE Transactions on
    • Deng Cai, Xiaofei He, and Jiawei Han. Locally consistent concept factorization for document clustering. Knowledge and Data Engineering, IEEE Transactions on, 23(6): 902-913, 2011.
    • (2011) Knowledge and Data Engineering , vol.23 , Issue.6 , pp. 902-913
    • Cai, D.1    He, X.2    Han, J.3
  • 8
    • 33745155436 scopus 로고    scopus 로고
    • A Bayesian hierarchical model for learning natural scene categories
    • CVPR 2005. IEEE Computer Society Conference on IEEE
    • Li Fei-Fei and Pietro Perona. A bayesian hierarchical model for learning natural scene categories. In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on, Volume 2, pages 524-531. IEEE, 2005.
    • (2005) Computer Vision and Pattern Recognition, 2005 , vol.2 , pp. 524-531
    • Li, F.-F.1    Perona, P.2
  • 9
    • 0034818212 scopus 로고    scopus 로고
    • Unsupervised learning by probabilistic latent semantic analysis
    • Thomas Hofmann. Unsupervised learning by probabilistic latent semantic analysis. Machine Learning, 42(1): 177-196, 2001.
    • (2001) Machine Learning , vol.42 , Issue.1 , pp. 177-196
    • Hofmann, T.1
  • 10
    • 79953230442 scopus 로고    scopus 로고
    • Investigating task performance of probabilistic topic models: An empirical study of plsa and lda
    • Yue Lu, Qiaozhu Mei, and ChengXiang Zhai. Investigating task performance of probabilistic topic models: an empirical study of plsa and lda. Information Retrieval, 14(2): 178-203, 2011.
    • (2011) Information Retrieval , vol.14 , Issue.2 , pp. 178-203
    • Lu, Y.1    Mei, Q.2    Zhai, C.3
  • 12
    • 0034244751 scopus 로고    scopus 로고
    • Normalized cuts and image segmentation
    • IEEE Transactions on
    • Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 22(8): 888-905, 2000.
    • (2000) Pattern Analysis and Machine Intelligence , vol.22 , Issue.8 , pp. 888-905
    • Shi, J.1    Malik, J.2
  • 14
    • 65749118363 scopus 로고    scopus 로고
    • Graphical models, exponential families, and variational inference
    • Martin J Wainwright and Michael I Jordan. Graphical models, exponential families, and variational inference. Foundations and Trends@ in Machine Learning, 1(1-2): 1-305, 2008.
    • (2008) Foundations and Trends@ in Machine Learning , vol.1 , Issue.1-2 , pp. 1-305
    • Wainwright, M.J.1    Jordan, M.I.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.