-
1
-
-
84855453464
-
Self-powered nanosensors and nanosystems
-
10.1002/adma.201102958
-
Wang Z L. Self-powered nanosensors and nanosystems. Adv Mater, 2012, 24: 280-285
-
(2012)
Adv Mater
, vol.24
, pp. 280-285
-
-
Wang, Z.L.1
-
2
-
-
33846979420
-
Toward cost-effective solar energy use
-
10.1126/science.1137014
-
Lewis N S. Toward cost-effective solar energy use. Science, 2007, 315: 798-801
-
(2007)
Science
, vol.315
, pp. 798-801
-
-
Lewis, N.S.1
-
3
-
-
76349101856
-
Thermal energy harvesting through pyroelectricity
-
10.1016/j.sna.2009.12.018
-
Cuadras A, Gasulla M, Ferrari V. Thermal energy harvesting through pyroelectricity. Sens Actuators A, Phys, 2010, 158: 132-139
-
(2010)
Sens Actuators A, Phys
, vol.158
, pp. 132-139
-
-
Cuadras, A.1
Gasulla, M.2
Ferrari, V.3
-
4
-
-
84862297351
-
Pyroelectric nanogenerators for harvesting Thermoelectric Energy
-
10.1021/nl3003039
-
Yang Y, Guo W, Pradel K C, et al. Pyroelectric nanogenerators for harvesting Thermoelectric Energy. Nano Lett, 2012, 12: 2833-2838
-
(2012)
Nano Lett
, vol.12
, pp. 2833-2838
-
-
Yang, Y.1
Guo, W.2
Pradel, K.C.3
-
5
-
-
33846951759
-
Biomass recalcitrance: Engineering plants and enzymes for biofuels production
-
10.1126/science.1137016
-
Himmel M E, Ding S Y, Johnson D K, et al. Biomass recalcitrance: Engineering plants and enzymes for biofuels production. Science, 2007, 315: 804-807
-
(2007)
Science
, vol.315
, pp. 804-807
-
-
Himmel, M.E.1
Ding, S.Y.2
Johnson, D.K.3
-
6
-
-
84877725083
-
Energy harvesting from ambient electromagnetic wave using human body as antenna
-
10.1049/el.2012.3129
-
Hwang J H, Hyoung C H, Park K H, et al. Energy harvesting from ambient electromagnetic wave using human body as antenna. Electron Lett, 2013, 49: 149-151
-
(2013)
Electron Lett
, vol.49
, pp. 149-151
-
-
Hwang, J.H.1
Hyoung, C.H.2
Park, K.H.3
-
7
-
-
0037502904
-
A study of low level vibrations as a power source for wireless sensor nodes
-
10.1016/S0140-3664(02)00248-7
-
Roundy S, Wright P K, Rabaey J. A study of low level vibrations as a power source for wireless sensor nodes. Comput Commun, 2003, 26: 1131-1144
-
(2003)
Comput Commun
, vol.26
, pp. 1131-1144
-
-
Roundy, S.1
Wright, P.K.2
Rabaey, J.3
-
8
-
-
76349105928
-
An Electromagnetic micro power generator for low-frequency environmental vibrations based on the frequency up conversion technique
-
10.1109/JMEMS.2009.2037245
-
Sari I, Balkan T, Külah H. An Electromagnetic micro power generator for low-frequency environmental vibrations based on the frequency up conversion technique. J Microelectromech Syst, 2010, 19: 14-27
-
(2010)
J Microelectromech Syst
, vol.19
, pp. 14-27
-
-
Sari, I.1
Balkan, T.2
Külah, H.3
-
9
-
-
67349175598
-
A micro electromagnetic low level vibration energy harvester based on MEMS technology
-
10.1007/s00542-009-0827-0
-
Wang P, Tanaka K, Sugiyama S, et al. A micro electromagnetic low level vibration energy harvester based on MEMS technology. Microsyst Technol, 2009, 15: 941-951
-
(2009)
Microsyst Technol
, vol.15
, pp. 941-951
-
-
Wang, P.1
Tanaka, K.2
Sugiyama, S.3
-
10
-
-
84894054921
-
Design and fabrication of integrated magnetic MEMS energy harvester for low frequency applications
-
Han M, Yuan Q, Sun X, et al. Design and fabrication of integrated magnetic MEMS energy harvester for low frequency applications. J Microelectomech Syst, 2013, DOI: 10.1109/JMEMS.2013.2267773
-
(2013)
J Microelectomech Syst
-
-
Han, M.1
Yuan, Q.2
Sun, X.3
-
11
-
-
22444438624
-
Design and optimization of a MEMS electret-based capacitive energy scavenger
-
10.1109/JMEMS.2005.844803
-
Peano F, Tambosso T. Design and optimization of a MEMS electret-based capacitive energy scavenger. J Microelectromech Syst, 2005, 14: 429-435
-
(2005)
J Microelectromech Syst
, vol.14
, pp. 429-435
-
-
Peano, F.1
Tambosso, T.2
-
13
-
-
84874967575
-
Frequency-multiplication high-output triboelectric nanogenerator for sustainably powering biomedical microsystems
-
10.1021/nl3045684
-
Zhang X S, Han M D, Wang R X, et al. Frequency-multiplication high-output triboelectric nanogenerator for sustainably powering biomedical microsystems. Nano Lett, 2013, 13: 1168-1172
-
(2013)
Nano Lett
, vol.13
, pp. 1168-1172
-
-
Zhang, X.S.1
Han, M.D.2
Wang, R.X.3
-
14
-
-
33645810366
-
Piezoelectric nanogenerators based on zinc oxide nanowire arrays
-
10.1126/science.1124005
-
Wang Z L, Song J. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science, 2006, 312: 242-246
-
(2006)
Science
, vol.312
, pp. 242-246
-
-
Wang, Z.L.1
Song, J.2
-
15
-
-
70350630468
-
Vibration energy harvesting with aluminum nitride-based piezoelectric devices
-
10.1088/0960-1317/19/9/094005
-
Elfrink R, Kamel T M, Goedbloed M, et al. Vibration energy harvesting with aluminum nitride-based piezoelectric devices. J Micromech Microeng, 2009, 19: 094005-1-094005-8
-
(2009)
J Micromech Microeng
, vol.19
, pp. 0940051-0940058
-
-
Elfrink, R.1
Kamel, T.M.2
Goedbloed, M.3
-
16
-
-
80053573320
-
Piezoelectric MEMS energy harvester for low-frequency vibrations with wideband operation range and steadily increased output power
-
10.1109/JMEMS.2011.2162488
-
Liu H, Tay C J, Quan C, et al. Piezoelectric MEMS energy harvester for low-frequency vibrations with wideband operation range and steadily increased output power. J Microelectomech Syst, 2011, 20: 1131-1142
-
(2011)
J Microelectomech Syst
, vol.20
, pp. 1131-1142
-
-
Liu, H.1
Tay, C.J.2
Quan, C.3
-
17
-
-
84881367613
-
Low-frequency wide-band hybrid energy harvester based on piezoelectric and triboelectric mechanism
-
10.1007/s11431-013-5270-x
-
Han M D, Zhang X S, Liu W, et al. Low-frequency wide-band hybrid energy harvester based on piezoelectric and triboelectric mechanism. Sci China Tech Sci, 2013, 56: 1835-1841
-
(2013)
Sci China Tech Sci
, vol.56
, pp. 1835-1841
-
-
Han, M.D.1
Zhang, X.S.2
Liu, W.3
-
18
-
-
33847196845
-
Energy harvesting MEMS device based on thin film thin film piezoelectric cantilevers
-
10.1007/s10832-006-6287-3
-
Choi W J, Jeon Y, Jeong J H, et al. Energy harvesting MEMS device based on thin film thin film piezoelectric cantilevers. J Electroceram, 2006, 17: 543-548
-
(2006)
J Electroceram
, vol.17
, pp. 543-548
-
-
Choi, W.J.1
Jeon, Y.2
Jeong, J.H.3
-
19
-
-
22844431664
-
MEMS power generator with transvers mode thin film PZT
-
10.1016/j.sna.2004.12.032
-
Jeon Y B, Sood R, Jeong J H, et al. MEMS power generator with transvers mode thin film PZT. Sens Actuators A, Phys, 2005, 122: 16-22
-
(2005)
Sens Actuators A, Phys
, vol.122
, pp. 16-22
-
-
Jeon, Y.B.1
Sood, R.2
Jeong, J.H.3
-
20
-
-
34147113273
-
Direct-current nanogenerator driven by ultrasonic waves
-
10.1126/science.1139366
-
Wang X, Song J, Liu J, et al. Direct-current nanogenerator driven by ultrasonic waves. Science, 2007, 316: 102-105
-
(2007)
Science
, vol.316
, pp. 102-105
-
-
Wang, X.1
Song, J.2
Liu, J.3
-
21
-
-
84877746590
-
Super-flexible nanogenerator for energy harvesting from gentle wind and as an active deformation sensor
-
10.1002/adfm.201202867
-
Lee S, Bae S H, Lin L, et al. Super-flexible nanogenerator for energy harvesting from gentle wind and as an active deformation sensor. Adv Funct Mater, 2013, 23: 2445-2449
-
(2013)
Adv Funct Mater
, vol.23
, pp. 2445-2449
-
-
Lee, S.1
Bae, S.H.2
Lin, L.3
-
22
-
-
84862300076
-
Functional electrical stimulation by nanogenerator with 58 v output voltage
-
10.1021/nl300972f
-
Zhu G, Wang A C, Liu Y, et al. Functional electrical stimulation by nanogenerator with 58 V output voltage. Nano lett, 2012, 12: 3086-3090
-
(2012)
Nano Lett
, vol.12
, pp. 3086-3090
-
-
Zhu, G.1
Wang, A.C.2
Liu, Y.3
-
23
-
-
84872099697
-
Flexible fiber nanogenerator with 209 v output voltage directly powers a light-emitting diode
-
10.1021/nl303539c
-
Gu L, Cui N, Li C, et al. Flexible fiber nanogenerator with 209 V output voltage directly powers a light-emitting diode. Nano Lett, 2013, 13: 91-94
-
(2013)
Nano Lett
, vol.13
, pp. 91-94
-
-
Gu, L.1
Cui, N.2
Li, C.3
-
24
-
-
1342346355
-
Modeling and analysis of micro piezoelectric power generators for micro-electromechanical-systems applications
-
10.1088/0964-1726/13/1/007
-
Lu F, Lee H P, Lim S P. Modeling and analysis of micro piezoelectric power generators for micro-electromechanical-systems applications. Smart Mater Struct 2004, 13: 57-63
-
(2004)
Smart Mater Struct
, vol.13
, pp. 57-63
-
-
Lu, F.1
Lee, H.P.2
Lim, S.P.3
-
25
-
-
0035330620
-
Energy scavenging with shoe-mounted piezoeleectrics
-
10.1109/40.928763
-
Shenck N S, Paradiso J A. Energy scavenging with shoe-mounted piezoeleectrics. Micro IEEE, 2001, 20: 30-42
-
(2001)
Micro IEEE
, vol.20
, pp. 30-42
-
-
Shenck, N.S.1
Paradiso, J.A.2
-
26
-
-
84886052589
-
A transparent single-frictionsurface triboelectric generator and self-powered touch sensor
-
Meng B, Tang W, Too Z H, et al. A transparent single-frictionsurface triboelectric generator and self-powered touch sensor. Energy Environ Sci, 2013, doi: 10.1039/c3ee42311e
-
(2013)
Energy Environ Sci
-
-
Meng, B.1
Tang, W.2
Too, Z.H.3
|